Mostrando entradas con la etiqueta David Hilbert. Mostrar todas las entradas
Mostrando entradas con la etiqueta David Hilbert. Mostrar todas las entradas

viernes, 1 de octubre de 2021

Paul Cohen, el matemático que por resolver un problema terminó creando dos mundos

En 1900, en un salón de conferencias de la histórica universidad parisina Sorbona, un alemán llamado David Hilbert le puso a los asistentes la tarea de matemáticas probablemente más difícil de la historia.

No eran, como suelen ser, ejercicios para aprender; eran preguntas que no tenían respuesta. Aún.

Hilbert era uno de los ponentes del Congreso Internacional de Matemáticos y la tarea era una lista de los que consideraba como los 23 problemas más importantes por solucionar.

La legendaria lista, conocida como "los problemas de Hilbert", definió las matemáticas de la era moderna.

Muchos se han resuelto, otros no, pero tanto los intentos exitosos como los fallidos han llevado al desarrollo de matemáticas muy profundas a lo largo del camino.

Encabezando la lista estaba una duda que había dejado en el aire una de las mentes más geniales de la historia: la de Greog Cantor, el matemático que se propuso conquistar el infinito.

Su inclusión era controvertida, pues muchos en esa época rechazaban los abstractos mundos que Cantor les estaba mostrando.

Hilbert, sin embargo, era uno de los que lo apoyaban.

Cantor fue la primera persona en comprender realmente el significado del infinito y darle precisión matemática.

Antes de él, el infinito era un concepto complicado y resbaladizo que realmente no parecía ir a ninguna parte.

Cantor mostró que el infinito se podía entender perfectamente y que, de hecho, no había un sólo infinito sino muchos.

Georg Cantor, el matemático que descubrió que hay muchos infinitos y no todos son del mismo tamaño Probó que el infinito de los números enteros (1, 2, 3, 4...) era más pequeño que el de los decimales infinitos (0,0000149000...; 0,179249239...).

Así, abrió la puerta a un inmenso y desconcertante territorio por explorar en el que se contaban infinitos.

Y Cantor lo exploró sin tregua, resolviendo muchos interrogantes en el camino.

Pero hubo uno que no pudo solucionar por más que lo intentó, aquel que llegó a conocerse como la hipótesis del continuo.

¿Habrá un infinito entre el más pequeño de los números enteros y el más grande de los decimales?

Esa era la primera pregunta de la tarea que Hilbert le puso a sus colegas ese día de 1900 en la Sorbona.

Depende... Cinco décadas más tarde, en Estados Unidos, un adolescente decidió enfrentarse a algunos de los principales problemas de las matemáticas.

A lo largo de su adolescencia fue considerado un prodigio matemático, asombrando a quienes le rodeaban por las habilidades que mostraba en los concursos de matemáticas.

Desde muy pequeño, Paul Cohen había ganado concursos y premios matemáticos, pero al principio le resultó difícil descubrir un campo en las matemáticas en el que realmente pudiera dejar su huella... hasta que leyó sobre la hipótesis del continuo de Cantor.

Hasta entonces, todos los intentos por resolver el problema, incluido el del mismo Hilbert, habían fracasado.

El único que había logrado rozar la línea final era el lógico, matemático y filósofo austríaco Kurt Gödel, miembro del Instituto de Estudios Avanzados (IEA) en Princeton.
Con el arrojo de la juventud, Paul Cohen, de 22 años, decidió que podía hacerlo.

Un año después, reapareció con un extraordinario descubrimiento.

¿Había un infinito más grande que el conjunto de todos los números enteros pero más pequeño que el conjunto de los decimales?

Sin duda, había un infinito más grande que el otro pero, ¿habría otro entre ellos?
Sí.
Y...
No.

Las dos respuestas podían ser verdaderas.
¿¡Cómo así!? La hipótesis del continuo decía que no había un infinito en medio de esos dos infinitos.

Cohen mostró que había una matemática en la que la hipótesis podía asumirse como cierta.

Pero había otra forma de matemáticas igualmente consistente en la que esa misma hipótesis podía asumirse como falsa: en ese ámbito había un conjunto infinito entre el de los enteros y el de los decimales.

Era una solución increíblemente atrevida y la demostración ofrecida por Cohen parecía cierta y correcta, pero su método era tan nuevo que nadie estaba absolutamente seguro.

Sólo había una persona en cuya opinión todos confiaban: la de Gödel.

Gödel no había logrado demostrar que la hipótesis del continuo era realmente cierta, pero sí que era consistente, lo que significa que con los métodos matemáticos con los que se contaba, no se podía probar que fuera falsa.

Había recorrido un largo camino y logrado llegar a la puerta tras la cual estaba la solución. Y aunque no había podido abrirla, era él quien le podía confirmar a Cohen que, efectivamente, había logrado lo que se había propuesto.

Marcus du Sautoy: "La fórmula para el infinito es simple: +1"
Sello de aprobación
Gödel comprobó la prueba y la declaró correcta.

"Acabas de lograr el progreso más importante en la teoría de conjuntos desde su axiomatización", le escribió a Cohen en una carta. "Tu prueba es la mejor posible", le escribió en otra. "Leerlo es como leer el libreto de una obra realmente buena".

Con el sello de aprobación de Gödel, todo cambió.

Hoy en día, los matemáticos insertan una declaración que indica si el resultado depende de la hipótesis del continuo.

Y es que se han construido dos mundos matemáticos diferentes en los que una respuesta es sí y la otra, no.

Ahora, para la pregunta de si Paul Cohen sacudió el universo matemático, la única respuesta es afirmativa.
* Parte de este artículo se basa en la serie de la BBC "The Story of Maths" con el matemático Marcus du Sautoy

martes, 29 de junio de 2021

_- 3 sorprendentes retos de la nueva lista de 23 problemas matemáticos del siglo XXI

_- "¿Quién de nosotros no se alegraría de levantar el velo detrás del cual se esconde el futuro; de echar un vistazo a los próximos avances de nuestra ciencia y a los secretos de su desarrollo durante los siglos futuros?".

Con esas palabras, el gran matemático prusiano David Hilbert abrió su charla en el Congreso Internacional de Matemáticos en París, el mismo en el que presentó una lista de 23 problemas matemáticos cuya resolución consideraba esencial para desvelar ese futuro que le intrigaba.

La colección fue tremendamente influyente e inspiradora.

Sus contemporáneos y sucesores se pusieron a hacer la difícil tarea y, desde entonces, 17 de los que se conocen como "los problemas de Hilbert" han sido parcial o totalmente resueltos.

Y todos, hasta los intentos fallidos, han llevado al desarrollo de matemáticas muy profundas a lo largo del camino.

Ahora, 121 años más tarde, para marcar el lanzamiento de la Agencia de Investigaciones e Invenciones Avanzadas británica, el Instituto de Ciencias Matemáticas de Londres (LIMS) creó una nueva lista de retos matemáticos para nuestra era.

En un simposio, los miembros del Instituto examinaron los más de 100 desafíos que habían recopilado, que incluían las contribuciones de investigadores líderes de todo el mundo, y -siguiendo la pauta de Hilbert- escogieron 23 indudablemente ambiciosos retos.

"Sabemos que algunos mirarán la lista y se preguntarán cómo podemos hablar de cosas tan locas que ni siquiera sabemos cómo empezar a describirlas, pero las matemáticas nos han llevado a lugares mágicos antes muchas veces", le dijo a BBC Mundo el físico Thomas Fink, director del LIMS y encargado de Investigación del Centro Nacional de la Investigación Científica de Francia (CNRS).

"Ni siquiera estamos cerca de obtener las respuestas, pero hay que recordar que estos problemas son una especie de hoja de ruta para los próximos cien años.

Piensa en cuántas cosas sorprendentes que han sucedido en los últimos cien años, tan sorprendentes que parecen salidas del reino de la fantasía; cosas como la mecánica cuántica, que parece milagrosa pero ahora la aceptamos como parte de la realidad", agregó, con un entusiasmo contagioso.

"Entre más nos adentramos en la física teórica y las matemáticas, más bellezas inmensas encontramos, así como monstruos y tesoros... es muy emocionante.
"A veces pienso que el mundo de las matemáticas y la física es más hermoso, más fascinante y más emocionante que la vida ordinaria, y me dan ganas de invitar a la gente a que se una a mi aventura".

Por supuesto, aceptamos su invitación y le pedimos que nos hablara de tres de los desafíos que nos llamaron particularmente la atención: las teorías del libre albedrío, de la simplicidad y de la inmortalidad.

Problema 13: Teoría del libre albedrío

Mucha gente encuentra esto extraño, pero es un problema serio.

El libre albedrío... ¿es un fantasma, una consecuencia de la vida o un atributo más general del momento presente?

Soy un físico teórico, y mis amigos que no son científicos a veces me preguntan cuáles son las cuestiones más grandes que enfrenta la ciencia, y les respondo: aquellas para las que no parece tener ni siquiera el comienzo de una respuesta.

Una de ellas es que aparentemente tenemos libre albedrío; no somos robots, tomamos nuestras propias decisiones, elegimos esto o lo otro y la inteligencia parece de alguna manera relacionada con la toma de decisiones correctas.

Mucho se basa en eso pero ¿qué dice la física sobre el libre albedrío? No mucho, aunque hay ciertas cosas que hemos empezado a entender.

En su libro "La nueva mente del emperador", por ejemplo, el físico matemático Roger Penrose -premio Nobel de Física 2020-, trató de entender la ciencia de la consciencia y exploró cosas fascinantes como qué puede ser; si somos deterministas o hay algo muy distinto a las máquinas en la manera en la que funciona el cerebro; si hay límites en la computación y si somos los humanos capaces de entender cosas que no son computables.

Y la última investigación que hizo otro de mis matemáticos favoritos John Conway (1937-2020) fue sobre algo llamado "el teorema del libre albedrío", la relación entre ciertas interpretaciones de la mecánica cuántica y lo que podríamos pensar es el libre albedrío. Argumentó que es posible que el libre albedrío exista en sistemas mucho más generales que la vida biológica.

¿Qué nueva física se requerirá para comprender este concepto aparentemente vital?

El punto es que, a pesar de que no tenemos muchas de las respuestas o incluso nos resulta difícil enmarcar el problema, eso no significa que el futuro no se abrirá y nos proporcionará formas de entender esto.

Entonces, cualquiera que vaya a ser nuestra comprensión del libre albedrío, ya sea que no existe y es una ilusión, que depende de algo biológico o es que una propiedad mucho más general de la vida, ciertamente las matemáticas jugarán un papel importante.

Problema 19: Teoría de la simplicidad

Esto me apasiona porque me parece que su vida se vuelve cada vez más tecnológica, hay más y más opciones y más complejidad a nuestro alrededor, y siento que no conduce a la satisfacción o el bienestar.

Los físicos hablan mucho acerca de la teoría de la complejidad, sobre cómo entender las reglas simples pueden generar patrones muy complejos.

Un ejemplo son las dunas, esas ondulaciones de arena que se alejan y se dividen y se unen.

La simplicidad de lo complejo.

Hay un proceso muy simple detrás de eso, que es un grano de arena se levanta en el viento y el viento se lo lleva cada vez más rápido y luego, cuando aterriza, golpea otros granos de arena que salen volando, el viento los acelera y se crea ese efecto de contagio.

Ese proceso pequeño y sencillo crea esa hermosa evolución de las ondulaciones en las dunas de arena.

Es así como las reglas simples pueden dar lugar a comportamientos complejos, y hay varios modelos de complejidad.

Pero, a pesar de esfuerzos, aún no tenemos una teoría de la simplicidad: no sabemos cómo describirla matemáticamente, y mucho menos, construirla.

Una posible idea es que esté relacionada con la capacidad de adaptarse fácilmente a diferentes entornos, con encontrar las piezas fundamentales con las que podamos construir lo que necesitamos en situaciones distintas.

Al mismo tiempo, ese sistema quizás sería pequeño, pues no querríamos que el número de configuraciones posibles -el número de formas de poner los bloques juntos- fuera astronómicamente grande.

Quizás la clave sea encontrar bloques fundamentales que puedan satisfacer distintas necesidades.

Al tener demasiadas opciones gastas mucha capacidad intelectual tratando de encontrar la mejor y a veces te hace menos creativo.

La música, con sus 7 notas, es un lindo ejemplo de cómo a veces las restricciones pueden hacernos más creativos.

Problema 23: Teoría de la inmortalidad

Esto es algo en lo que he trabajado recientemente.

En primer lugar hay una diferencia entre morir y envejecer. Y ser inmortal no significa vivir para siempre, significa que podrías vivir para siempre.

Uno se puede morir si lo atropella un auto o algo así, pero lo que es extraño sobre la vida es que envejecemos. Es como si hubiera algo dentro de la vida que dice: 'después de cierto tiempo, tienes que morir'.

Eso es muy extraño. ¿Por qué hay una muerte programada?

La creencia tradicional es que el envejecimiento es una acumulación de errores en el almacenamiento de la información biológica que nos codifica.

Pero cada vez hay más evidencia de que no es tan simple.

Lo que nos gustaría establecer, en primer lugar, es si el envejecimiento es un proceso termodinámicamente fundamental.

Un paso para hacerlo es demostrar que el envejecimiento no es inherente a la teoría fundamental de la evolución, sino que la norma es la inmortalidad.

La razón por la que morimos sería más bien porque desde el punto de vista de la selección natural es una opción evolutiva ventajosa pues abre la puerta para que la descendencia produzca mejores modelos de nosotros mismos.

Si podemos probar que el envejecimiento es un atributo elegido por la selección natural y no es fundamental, tal vez podamos ralentizar ese proceso y reducir sus efectos.

Es muy misterioso pero cada vez hay más evidencia experimental que indica que así es.

Lo que se descubrió, por ejemplo, con las células pluripotentes -que pueden llevarse de vuelta a su estado original y programarlas para que se conviertan en un tipo de célula diferente- es que todos los indicadores de envejecimiento de esas células también se revierten... como si la devolvieras al estado de edad 0.

Además, hay un puñado de especies en las que el "programa muerte" no parece manifestarse.

línea marcador azul
Los otros 20 problemas

Para no dejarte con la curiosidad, ya que -si llegaste hasta aquí obviamente eres de los nuestros-, aquí están los demás desafíos (¡no menos interesantes!):

1. Teoría del todo

Carecemos de una sola teoría que describa el Universo. La gravedad, descrita por la relatividad general, no es consistente con nuestra teoría cuántica de campos de las otras tres fuerzas. ¿Se resolverá esto mediante la teoría de cuerdas, la gravedad cuántica de bucles o algo nuevo? ¿Cuáles son las consecuencias comprobables de tal teoría, que está más allá del límite de la experimentación humana?

2. Hipótesis de Riemann

Los intentos de resolver la hipótesis de Riemann han inspirado ramas completamente nuevas de las matemáticas. Por ejemplo, la función zeta de Riemann es el tipo más simple de función L, y parece desempeñar un papel en las matemáticas modernas similar a los polinomios en las matemáticas antiguas. ¿Qué nuevos conceptos se necesitan para resolver el más importante de los problemas abiertos?

3. Termodinámica de la vida

Según la teoría de Darwin, la evolución es el resultado de la mutación, la selección y la herencia. Pero desde una perspectiva de la física, no entendemos cómo comenzó la vida en primer lugar. ¿Cuál es la base termodinámica para la autorreplicación y la adaptación emergentes, de las cuales la biología es solo un ejemplo? ¿Se puede utilizar para crear vida artificial digital?

4. La estructura de la innovación

A pesar de los avances en nuestra comprensión de la evolución, lo que impulsa la innovación sigue siendo difícil de alcanzar. La innovación tecnológica opera en un espacio en expansión de bloques de construcción, en el que las combinaciones de tecnologías se convierten en nuevas tecnologías. ¿Podemos caracterizar la innovación de forma matemática, de modo que podamos predecirla e influir en ella a través de intervenciones?

5. Física del autoensamblaje

El autoensamblaje es cómo se pliegan las proteínas, se forman los copos de nieve y se ensamblan los virus. Se puede utilizar para fabricar objetos complejos y a nanoescala a bajo costo. Debido a que es una encarnación física de la computación, está profundamente relacionada con la decidibilidad. ¿Se puede combinar la física estadística con la teoría de la computabilidad para construir una teoría integral del autoensamblaje?

6. Constante cosmológica

Solo una pequeña fracción del Universo observable está formada por materia conocida. Se conjetura que la mayoría es materia oscura y energía oscura, para las cuales no hay consenso en la explicación. ¿Por qué la energía del punto cero del vacío cuántico no causa una gran constante cosmológica? ¿Qué lo anula? ¿Se necesita nueva física fundamental para reformular la gravedad?

7. Programa Langlands

Existe evidencia de una gran teoría unificada para las matemáticas, llamada Programa Langlands. Busca relacionar formas automórficas en geometría y teoría de números con la teoría de representación en álgebra. La prueba de Wiles del último teorema de Fermat puede verse como solo un ejemplo de ello. ¿Cómo podemos avanzar y ampliar este Programa, y ​​qué frutos dará cuando lo hagamos?

8. IA inteligente

Lejos de acercarse a la inteligencia artificial general, la IA no ha progresado más allá del ajuste de curvas de alta dimensión. ¿Qué conocimientos matemáticos podrían conducir a una IA más inteligente, como el razonamiento causal, los módulos funcionales o una representación del entorno? ¿Existen límites fundamentales para la IA y qué podría decirnos esto sobre la inteligencia humana?

9. Reparable en lugar de robusto

Para estar seguros del éxito frente a la incertidumbre, hacemos planes que pueden hacer frente a lo inesperado. Una forma es ser robusto: capaz de absorber un revés conocido. Otro es ser reparable: fácilmente modificable ante contratiempos desconocidos. Nuestros enfoques de las amenazas, como la guerra o el cambio climático, tienden a ser sólidos. ¿Cómo sería una teoría de la reparabilidad?

10. El sistema operativo de la vida

Las redes de regulación genética gobiernan la morfogénesis y determinan la identidad celular. La concisión de virus sugiere que este software genético usa subrutinas, como software digital. ¿Cuáles son las leyes que rigen el procesamiento de la información genética? ¿Pueden arrojar luz sobre el sistema operativo de la vida, preparando el escenario para un análogo biológico de la revolución del silicio?

11. El universo matemático

Wigner notó la efectividad irrazonable de las matemáticas en física. Hoy, estamos viendo lo contrario: los intentos de avanzar en la física, como la teoría de cuerdas, están impulsando las matemáticas. ¿Existe una convergencia entre estas dos disciplinas, y debería eso influir en cuánto financiamos y avanzamos en matemáticas? ¿Se puede hacer riguroso el universo matemático de Tegmark?

12. Descripción de la estructura de la red

La ciencia de las redes, que extrae el significado de las redes del mundo real, es popular pero poco sofisticada. Para realizar su potencial, debe basarse en conceptos más rigurosos de la teoría de grafos y más allá. ¿Podemos formalizar nociones de geometría y topología de red que sean compatibles con sus análogos continuos, y una termodinámica para describir las desviaciones que se alejen de ellos?

13. Teoría del libre albedrío

14. Creatividad colectiva

En 1665, la publicación de las primeras revistas científicas aceleró la investigación al facilitar la suma de avances pequeños de varios científicos en vez de esperar a grandes progresos que, hechos en el aislamiento, podían ser más lentos. Ahora, las plataformas de colaboración anónimas como Wikipedia indican que podemos se puede acelerar mucho más. Pero, ¿por qué y cuándo funciona la creatividad colectiva? ¿Pueden las plataformas como Polymath de Gowers transformar el proceso de descubrimiento?

15. Materia programable

Podemos hacer que las superficies y los volúmenes cambien de forma mediante el uso de polímeros que respondan a la temperatura y la corriente. ¿Cuáles son el alcance y los límites de tal materia programable? ¿Podemos utilizar la geometría diferencial, los avances recientes en origami algorítmico y otras herramientas matemáticas para proporcionar un lenguaje para la ingeniería inversa de formas y mecanismos útiles?

16. Fundación de TCC

¿Se puede hacer rigurosa la teoría cuántica de campos, que describe todas las partículas e interacciones elementales? Un problema abierto es demostrar que para cualquier grupo de calibre compacto, existe una teoría de Yang-Mills en cuatro dimensiones y predice una partícula más ligera con masa positiva. Esto probablemente requerirá nuevos tipos de matemáticas y ofrecerá una nueva perspectiva de la física.

17. Dualidades matemáticas

Las dualidades juegan un papel clave en cómo formamos conocimientos en física y matemáticas. Los ejemplos incluyen la correspondencia de Langlands geométrica, dualidades a través de las teorías de cuerdas y campos cuánticos, y la clasificación ADE. ¿Son las dualidades un artefacto de cómo desciframos nuevas teorías, o tienen una causa más fundamental? ¿Podemos sistematizarlos para descubrir más?

18. IA ingeniosa

Tanto la evolución como la innovación hacen uso de módulos funcionales interoperables para aumentar las probabilidades de que los retoques tengan éxito. Pero los algoritmos de aprendizaje profundo, por el contrario, están conectados globalmente. Esto los hace difíciles de construir de manera jerárquica, así como también difíciles de entender para los humanos. ¿Podemos formular un marco para la IA que se pueda diseñar?

19. Teoría de la simplicidad

20. Conjeturas asistidas por IA

Las buenas conjeturas pueden inspirar nuevas ramas de las matemáticas. Provienen de detectar patrones y aplicar el instinto. Debido a que las matemáticas son exactas y no hay coincidencias de equivalencia, la detección automática de patrones es inmune al sesgo que normalmente se encuentra en la búsqueda de alta dimensión. ¿Pueden las máquinas ayudar a identificar las conjeturas de los candidatos y acelerar la investigación teórica?

21. Matemáticas de causalidad

La causalidad es fundamental para la forma en que hacemos predicciones y estructuramos la sociedad. Sin embargo, nuestras matemáticas para describirla son pobres. ¿Puede una teoría de la causalidad más sofisticada ayudar a desbloquear desafíos como la IA inteligente, el sistema operativo de la vida e incluso cómo construimos teorías físicas? ¿Cómo pasar de una noción microscópica a una macroscópica de causalidad?

22. Aparición de la virtud

La base del agente racional plenamente informado de la economía es inadecuada para describir el comportamiento del mundo real, especialmente la actividad virtuosa. ¿Pueden los conocimientos desde la visión microscópica de la ciencia del comportamiento y la visión macroscópica de la termodinámica formar la base de una teoría de juegos cooperativos que explique el surgimiento de la virtud en los individuos y las organizaciones?

23. Teoría de la inmortalidad