Mostrando entradas con la etiqueta Newton. Mostrar todas las entradas
Mostrando entradas con la etiqueta Newton. Mostrar todas las entradas

jueves, 19 de enero de 2023

_- René Descartes, la tentación geométrica.

_- La matematización de la realidad arrancó con el francés y, bajo el empuje de la física newtoniana, ha gobernado el destino filosófico de Europa y podríamos decir que del mundo.

Las matemáticas son falsas. ¿Qué se quiere decir? Que falsean la vida, que la tasación numérica y cuantitativa del universo supone un reduccionismo intolerable. Ofrecen un sucedáneo de realidad, siniestro, donde no hay deseo ni voluntad, donde todo sucede impersonalmente. Al mismo tiempo, las matemáticas son la invención más prodigiosa de la imaginación humana. Hacen creer que el fondo de lo real es racional. Y esa fue la fe de Descartes, una convicción que, generalmente, aparece en la juventud. Lo real es racional. Lo real puede someterse al escrutinio matemático y éste lo reflejará fielmente. Esa fue la apuesta de un joven metido a militar, seguro de sí mismo, que advirtió en sueños los signos de su vocación filosófica. Un sueño de juventud que plasmó en el Discurso del método y que ha marcado la Edad Moderna. Hasta el punto de que la fe en la racionalidad del mundo (de origen onírico) todavía se enseña en las escuelas. La matematización de la realidad arrancó con el francés y, bajo el empuje de la física newtoniana, ha gobernado el destino filosófico de Europa y podríamos decir que del mundo.

Creo que fue Bertrand Russell quien dijo que a ningún viejo le interesan las matemáticas. Pues el matemático, como advirtió Demócrito, se arranca los ojos para pensar. Y la vida, cuando es veterana, lo que quiere es seguir viendo, seguir sintiendo. Se interesa, fundamentalmente, por el deseo y la percepción. Por indagar cómo la percepción va suscitado el deseo de nuevas percepciones. En ningún caso renunciará al color, como hace el matemático, pues el color es irracional. A la inteligencia madura los modelos matemáticos del universo le hacen sonreír, le parecen el juego inocente (y brillante) de una inteligencia que todavía no ha vivido lo suficiente. Pero ocurre que el sueño matemático, la tentación geométrica, como me gusta llamarla, ha dado unos réditos magníficos a nuestra civilización. Ha hecho posible la expansión colonial y dominar el mundo mediante el poder tecnológico. Nos ha llevado a la Luna, al bosón de Higgs, a la bomba de nuclear y al laboratorio global (a un experimento planetario propiciado por un engendro biotecnológico). Las matemáticas son muy útiles para la guerra, también para controlar el flujo de la información. Las matemáticas no sólo crean teoremas, crean opinión. La consecuencia final de todo ello es moral. Modelos matemáticos (algoritmos) nos dirán qué es bueno y qué es malo, quién es el tirano, cual es el tratamiento adecuado para enfermedades globales, cómo concebir, en definitiva, la realidad.

Un sueño de juventud
La noche del 10 de noviembre de 1619 es un momento tan decisivo para la historia de Europa como la batalla contra los turcos de Solimán el Magnífico a las puertas de Viena (1519) o el desembarco de Normandía (1945). Pero lo que ocurre aquella noche no es un episodio bélico sino imaginal. Un joven soldado, educado por los jesuitas, brillante y decidido, tiene una serie de sueños en un campamento militar. De esa experiencia sale un librito, más biográfico que científico, que servirá de fundamento a una ciencia que todavía no existe, la física moderna (creada por Newton medio siglo después), y a otra que, aunque antigua, se verá profundamente renovada: la matemática moderna.

En ese preciso instante nace, de la imaginación, la fe racionalista. Esa fe sustituye a otra fe, anquilosada, que ha dejado de inspirar, que se ha enredado en monsergas escolásticas y academicistas. Las mentes más brillantes de Europa se volcarán en ella. Spinoza, Leibniz (sólo parcialmente), Voltaire, Newton, Laplace, los philosophes, y ese impulso llegará hasta el positivismo del XIX, que dominará por completo la ciencia. Las matemáticas, siendo una fantasía, son una vía posible en nuestras relaciones con el universo. Un universo que en el mundo antiguo concebía mediante cualidades y que pasa a ser de cantidades. Esa es la vía que elige Europa, cansada del puritanismo, las bulas papales y el control jesuítico. Europa se adhiere con entusiasmo a la premisa de Galileo: la naturaleza habla el lenguaje de las matemáticas. Aprendiendo esa lengua, podremos dialogar con ella, o mejor, persuadirla, de que se avenga a nuestros deseos (todo empieza y termina en el deseo). El siguiente paso, claro está, es que, nosotros, al reflejarnos en la naturaleza, quedamos matematizados, es decir, pasamos a ser seres regidos por leyes numéricas y equivalencias cuantitativas. Siendo matemáticos, podemos dar el siguiente paso, considerarnos mecánicos. El ser humano como mecanismo, pariente cercano del androide. Esta es, de manera simplificada, la visión moderna de lo humano. Si no fuera por el temporal que se avecina, resultaría cómica.

¿Dónde han quedado la percepción y el deseo que, según Leibniz y ciertas filosofías de origen indio, son los constituyentes esenciales de lo real? La respuesta es sencilla. Se han mecanizado. La percepción y el deseo son también mecanismos. El mundo al revés. La causa es ahora el efecto. Mecanismos reparables, modificables, perfeccionables. De toda esa deriva; que es la nuestra y con la que habremos de negociar (no valen escapismos, no hay vuelta posible a la selva, ni regreso a Oriente); el primer representante es Descartes.

La Flèche
¿Quién fue Descartes? Un tipo singular, de carácter fuerte, que sabe estar solo, independiente y valiente. Un tipo que trabajaba en la cama y se despertaba más tarde de lo normal. Y cuando se lo reprochaban aducía que “dormía más despacio”. Un joven que, como dice Valéry, tiene alma de geómetra. Y que, para pensar con más claridad, es capaz de reducir la geometría (la figura) al álgebra (la relación numérica). La geometría le provoca (como dirían en Venezuela), la geometría no es sólo el modelo, es el excitante de su pensamiento. La geometría es atractiva, le apetece. Hoy sabemos que geometrías hay muchas (entonces no). Sabemos que la de Euclides, la más simple e intuitiva, es provinciana. Es decir, funciona en las distancias cortas. Es una verdad local, de pueblo. Sirve para hacer un puente o un edificio. Le pasa algo parecido a la física de Newton, que también es local y puede servir, como mucho, para llegar a la Luna.

Descartes es orgulloso, reservado y altivo (a pesar de su corta estatura, o precisamente por ello). Parece tímido, pero cuando le provocan es combativo, agresivo y puede perder los papeles. Entre la prominente nariz y las pobladas cejas, brilla una mirada inquisitiva y atenta. No es atlético ni agraciado, pero tiene una buena opinión de sí mismo (esa que da la inteligencia). A diferencia de otros filósofos, sabe escribir. Lo hace en francés, una lengua vulgar, no científica. Sus obras no han dejado de publicarse durante cuatro siglos y con ellas arranca el pensamiento moderno. Cincuenta años transcurren entre la publicación del Discurso del método (1637) y los Principia Mathematica de Newton (1687), dos obras que deciden el destino de nuestra civilización. Cuando Descartes escribía todavía no existía la Física, tal y como hoy la conocemos, que será la ciencia dominante hasta nuestro siglo, donde empieza a ser sustituida (lo estamos viviendo) por la biotecnología. En las escuelas de secundaria se enseña que con la ciencia moderna la humanidad logró una mayor comprensión y dominio de la naturaleza. Ambas cosas son discutibles, sobre todo la primera. Respecto a lo segundo, el dominio excesivo termina en revuelta, la obsesión por el control en caos. Ya se sabe, lo mejor es enemigo de lo bueno.

Enrique IV, nacido protestante, convertido al catolicismo (“París bien vale una misa”), vuelto a la fe protestante y asesinado por un jesuita, funda en 1604 el Colegio de La Flèche. Los jesuitas, a los que el rey ha permitido regresar, educan en esta institución a los hijos de la nobleza. Hay amores que matan. Enrique IV, defensor de los jesuitas, será asesinado por uno de ellos. Habiendo sido protestante, muchos no se creyeron su conversión. El regicidio será la antesala de la Guerra de los Treinta Años. El corazón del rey asesinado, metido en una urna, descansará en La Flèche. Descartes ingresa en La Flèche con diez años. Hay lecciones diarias, debates y discusiones semanales. Todo en latín, el uso del francés está castigado. Cuando abandona el colegio tiene la sensación de que sale más confundido de lo que entró.

Los sueños y el método
Descartes ha decidido dejar las clases y estudiar el gran libro del mundo. El resto de su juventud lo pasará viajando, visitando cortes y ejércitos, mezclándose con la gente. Encuentra más verdad entre los ciudadanos del mundo que entre los profesores. Los primeros serán castigados si se equivocan en sus razonamientos, mientras que los errores de los eruditos no tienen consecuencias prácticas. Se une al ejército de Guillermo de Orange. La elección de ese destino sigue siendo un misterio. Un ejército protestante, enemigo del poder de los Austrias, para un católico educado por los jesuitas. La posibilidad del espionaje no debe descartarse. Poco después, abandona los Países Bajos para incorporarse a otro ejército, esta vez más afín a su condición de católico. Maximiliano de Baviera se dirige a Praga para vengar la defenestración allí ocurrida. Se mantiene al margen del combate, quizá como mero observador o como ingeniero militar, no lo sabemos.

Las matemáticas, siendo una fantasía, son una vía posible en nuestras relaciones con el universo
El filósofo tiene una epifanía, una visión del método que “desvelará todo el conocimiento”. Ocurre la noche del 10 de noviembre de 1619, tras un día de cavilaciones en una habitación caldeada por una estufa, seguido de una noche de sueños extraordinarios que anota escrupulosamente en su cuaderno. Sus primeros biógrafos localizan el acontecimiento en Ulm, un año antes de la Batalla de la Montaña Blanca, cuando se dirige al encuentro del ejército de Maximiliano. Descartes considera estos sueños proféticos. El espíritu de la verdad le ha poseído, ahora ambiciona un conocimiento completo y definitivo.

En 1629, tras una reunión con el cardenal Berulle, ministro del rey de Francia, se exilia en las Provincias Unidas de manera permanente. Cambia con frecuencia de domicilio y mantiene en secreto de su paradero. Se ha sugerido que ya no era bienvenido en Francia y que le invitaron a abandonar el país debido a su alianza con los jesuitas, defensores de los intereses de los Austrias y enemigos de Francia. Sea como fuere, se establece en los Países Bajos, donde pasará los siguientes veinte años de su vida, los más productivos, entre el mar y los marjales jalonados de molinos de viento. Las Provincias Unidas son pacíficas, tolerantes y cada vez más ricas. Vive en el anonimato y pide a Mersenne que no revele a nadie su paradero. Pero poco hay de retiro en su nueva ciudad. Vive en un barrio bullicioso, populoso y activo. Ámsterdam es el centro de innumerables rutas comerciales. En el puerto trabaja el padre de Baruj Spinoza, que está a punto de nacer muy cerca de allí, y que enseñará su filosofía a jóvenes inquietos que buscan otros modelos de realidad.

El ser humano es un compuesto de cuerpo y alma. El cuerpo es “una estatua o máquina hecha de tierra”. La digestión, la circulación, la respiración, los espíritus animales que recorren el cerebro y los nervios, constituyen una maquinaria, parecida a la de las estatuas parlantes de los jardines reales de Saint Germain. Los nervios son como las tuberías de las fuentes de aquellos jardines. El alma racional reside en el cerebro como el guarda de las fuentes que maneja los depósitos. Ahora bien, sólo el ser humano tiene alma, el resto de los animales son meramente máquinas, privadas de emociones y sensaciones, simples mecanismos de estímulo y respuesta. La partición cartesiana: ser humano libre y consciente, el resto de los seres mecánicos e inconscientes, tendrá un poderoso impacto en la civilización occidental, que encontrará en ella la justificación para un expolio ilimitado del entorno natural.

Las aspiraciones de Descartes quedan definidas en el Discurso del método, que marca el camino que seguirá en la vida, “cultivar la razón y avanzar cuanto pueda en el conocimiento de la verdad”. Cuando empieza a utilizar el método, siente “un contento tan grande que no creo que nadie haya podido disfrutar de otro más dulce o puro en esta vida”. Toma algunas notas. Promete no apartarse de la apariencia de ortodoxia. “El temor de Dios es el principio de la sabiduría”. Avanzará por el escenario del mundo “enmascarado como hacen los actores para ocultar sus rostros encendidos”. Las ciencias deben trabajar emboscadas. Se compromete a no aceptar nada que no sea evidente, guiado por una retórica de lo elemental que hoy puede resultar ingenua. Hacer clasificaciones completas y exhaustivas de cada asunto. Dividir cada una de las dificultades en tantas partes como sea posible. Dirigir con orden sus pensamientos. Ascender poco a poco de lo más sencillo y fácil a lo más complicado y difícil. Esboza un código moral provisional. Lo primero es obedecer las leyes y costumbres locales (manteniéndose fiel a la religión que ha heredado de sus padres). Lo segundo, un principio estoico, “dominarme a mí mismo antes que a la fortuna”. Lo tercero, cultivar la razón para avanzar en el conocimiento de la verdad.

'El discurso del método' de Descartes, expuesto en la Biblioteca Nacional de España en 2018. EDUARDO PARRA (GETTY IMAGES)

En el verano de 1633, Galileo es detenido por la Inquisición y condenado a arresto domiciliario de por vida. Todas las copias del Sistema del mundo son arrojadas al fuego. Descartes sigue de cerca el proceso. Galileo, experto en lentes y copernicano, ha visto las montañas de la luna y las lunas de Júpiter y ha escrito algo que quedará para siempre grabado en la mente del filósofo: “La naturaleza habla el lenguaje de las matemáticas”.

Correspondencias
Desde Holanda Descartes mantiene una intensa correspondencia con dos mujeres que será decisivas en su vida: la princesa Isabel de Bohemia y la reina Cristina de Suecia. Ambas le urgen a escribir sobre asuntos que de otro modo no hubiera abordado. A Descartes no le interesa tanto la metafísica como a ellas, a la que sólo decía “muy pocas horas al año”. La correspondencia con la princesa Isabel de Bohemia, una princesa pobre, hija de un rey derrotado, nos ofrece vislumbres de la moral cartesiana. Algunos han percibido entre líneas una pulsión erótica e incluso el enamoramiento. La princesa ha observado los efectos en su salud de los estados emocionales y quiere saber más. Pide al filósofo que le resuelva el problema mente-cuerpo, que ni el Buda pudo resolver y que, como todo el mundo sabe, carece de solución, pese a las promesas de las neurociencias, que sólo hacen que prometer (y así, financiarse). A tal efecto, redacta un breve tratado: Las pasiones del alma, donde se reafirma en su dualismo y da una explicación mecánica a las mismas, afirmando que la glándula pineal, en el interior del cerebro, es la sede del alma, y que desde allí radia al resto del cuerpo mediante los “espíritus animales”. Distingue, de paso, entre el amor benevolente, que nos hace querer el bienestar de lo que amamos, y el amor concupiscente, que nos empuja a poseer aquello que amamos. Una distinción que sólo concierne a los efectos del amor, no a su esencia. Tras algunos comentarios sobre Séneca, afirma que la felicidad consiste en “el perfecto contento interior” y le inculca cuatro verdades del estoicismo: que hay un Dios del que depende todo, que las almas existen con independencia del cuerpo y son más nobles que éste, que el universo es inmenso y debemos maravillarnos de que esté por completo a nuestro a servicio, y que vivimos en sociedad y el interés general es más importante que el individual.

Descartes regresa a París para solicitar en la corte una pensión. En un pergamino hermosamente sellado, se le ha insinuado un cargo, un puesto diplomático o un título. Hay una escena que sobrecoge y que es antesala de su muerte. Descartes ha alquilado en el centro de la ciudad unas lujosas habitaciones, cerca de palacio. Se mira complacido en el espejo. Acaba de comprar un elegante traje de seda verde, un sombrero emplumado y una espada. Se ve a sí mismo como caballero pensionista del rey. Pero la revuelta de La Fronda echa por tierra sus planes. Se levantan 1200 barricadas por todo París, que hacen imposible y peligrosa la circulación. El rey Luis XIV es todavía un muchacho y la regencia está en manos de su madre. Ana de Austria ha vaciado las arcas reales y el filósofo regresa a Holanda cuando constata que no habrá pensión. Un fracaso que le llevará a aceptar la invitación de la reina Cristina de Suecia. La correspondencia entre el filósofo y Chanut, embajador francés en Suecia, llena de insinuaciones, confirma el deseo de Descartes de moverse en los círculos del poder. En la corte de Estocolmo morirá prematuramente, oficialmente de neumonía, aunque algunos dicen que envenenado.

El 2 de septiembre de 1649 zarpa hacia Estocolmo. Suecia resulta una decepción al poco de llegar. El frio extremo, la gélida religión luterana y la reserva de sus gentes (junto a la barrera del idioma) dificultan su estancia. La reina Cristina, muy joven, ha sido educada como un muchacho, domina los caballos y las armas y es una apasionada del estudio. Cuando sale de caza, se hace leer en voz alta a Homero y, en los desayunos, a Aristóteles. Ha hecho construir un gran teatro y sueña con una corte renacentista, protectora de las artes y la cultura. Recibe a pintores, filósofos, músicos y arquitectos. Descartes forma parte del plan. Le encargará algunos libretos de ópera.

El filósofo está interesado en hacer partícipe de su método a la reina. En sus experiencias previas en la corte, ha advertido que los reyes están más interesados en los secretos de la alquimia o la astrología que en sus recetas filosóficas. En el primer encuentro, la reina experimenta cierta decepción. Ante ella, un hombre de cierta edad, corto de estatura y con una peluca violentamente rizada. Ella le promete un título, una hacienda, una pensión y un séquito. Descartes comete la torpeza de hablarle de su prima Isabel, con la que ha mantenido una correspondencia más duradera e íntima, y que probablemente es más inteligente y bella que la reina. Conforme pasan los días, advierte que el ardor de Cristina por la filosofía se enfría. Le interesan más los clásicos griegos, que para Descartes son una pérdida de tiempo, y cuya ciencia es anticuada y falsa. El invierno se acerca, el frio arrecia y los días son cada vez más breves. Se le sugiere que escriba música para el gran teatro que acaba de construir la reina. Rechaza la proposición, pero acepta como compensación hacerse cargo del libreto. Tratará de destruir el manuscrito, que sabe mediocre, el embajador guardará una copia. Al público, sin embargo, le gusta, y pide al filósofo otra pieza teatral, un drama amoroso, con princesas, amantes y un tirano. Descartes no puede creerlo. Resulta evidente que se ha equivocado viniendo a Suecia.

Se le encarga redactar los estatutos de la nueva Academia de Suecia. Incluye una regla significativa: sólo los nacidos en el país podrán pertenecer a ella. Es un modo de preparar su salida. Quiere volver a casa. Se siente fuera de lugar. Sólo desea la tranquilidad y el reposo. Entretanto, las clases particulares a la reina empiezan en enero, el mes más frio, a las cinco de la mañana, cuando ella sabe que al filósofo le gusta quedarse en la cama toda la mañana, leyendo, pensando y escribiendo. La biblioteca no está caldeada a esa hora, llega aterido de frio tras atravesar a pie un pequeño puente. En dos semanas, empieza a sentirse enfermo y contrae una neumonía. El filósofo no confía en los médicos de la reina, Fabrica sus propios remedios: tabaco líquido con vino caliente, cuyo efecto expectorante sacará la flema de los pulmones. Se acerca el lamentable final, en una tierra extraña y fría. Algunos dicen que ha sido envenenado por celosos cortesanos. La carta de un médico que lo atiende parece confirmarlo, aunque el testimonio de quienes estuvieron junto a su lecho de muerte, el embajador y su criado, lo desmienten.

El cadáver de Descartes permaneció en Suecia durante años. El 1667 es exhumado y trasladado a Francia. Al embajador se le permite amputar el índice de la mano derecha. Alguien extrae la cabeza y la sustituye por otra. El cadáver tiene varios sepelios hasta descansar, decapitado, en la iglesia de St. Germain des Près, cerca de la casa de Sartre. El Museo del Hombre de París asegura que la testa que hay en sus vitrinas es la de Descartes.

El Discurso del método
La época es tumultuosa, necesita orden y método. La Guerra de los Treinta Años ha sumido a Europa en una larga y cruenta contienda, mientras Descartes prosigue sus investigaciones del mundo sublunar. El Discurso, publicado en 1637, es su primera obra, tiene cuarenta años. Sirve de prólogo, por exigencias del editor, a tres tratados científicos: uno sobre óptica (donde describe con detalle el ojo y la visión), otro sobre meteorología (donde explica el arco iris) y el último, el más importante, sobre geometría (donde ofrece un método general para resolver todos los problemas). El texto es un palimpsesto que reúne escritos de diversas épocas. La condena a Galileo ha tenido mucho que ver en su composición. Algunos de los materiales han sido extraídos de Le Monde, obra que decide no publicar por temor a la Inquisición.

Es significativo que el libro más importante del pensamiento moderno (o al menos el más influyente) sea el monólogo autobiográfico de un episodio ocurrido a un joven de 23 años tras una serie de sueños y que es texto sea el texto fundacional del racionalismo moderno, el método que pretende unificar todas las ciencias (que la escolástica hacía plurales) y ofrecer la clave de todo el conocimiento. El salto es magnífico. El universo es un reloj que da las horas puntualmente. No retrasa ni desvaría. Ese será el estilo de Europa.

Descartes elogia el dictamen de la razón, la creación individual frente a la colectiva y los “simples razonamientos del buen sentido”. Todos hemos sido niños, nos dice, y todos hemos experimentado la contradicción entre nuestros apetitos y las exigencias de nuestros preceptores. “De ahí que es casi imposible que nuestros juicios sean tan puros y sólidos como los serían si, desde el momento de nacer, hubiéramos dispuesto por completo de nuestra razón y sólo ella nos hubiera guiado”. La frase anterior expresa, de manera clara, un error de planteamiento. Ortega lo advertirá. El ser humano no es racional. Puede, con mucho esfuerzo, llegar a serlo (nunca lo logrará completamente), pero de entrada no lo es. El neonato está lleno de inclinaciones, pulsiones y deseos, que tiene muy poco de racionales. Tampoco nace libre, la libertad habrá de conquistarla. En estos dos planteamientos desafortunados se cifra el destino del pensamiento de Descartes y, dada su influencia, del continente. El filósofo, además, mantuvo toda su vida su adhesión a la fe católica y su compromiso con los jesuitas (a sabiendas de que ni la doctrina ni la fe eran racionales).

A continuación, nos ilustra sobre el modo en que gobierna su vida. Reforma las opiniones heredadas (“los principios que me dejé inculcar en mi juventud”) y las sustituye por otras sometidas al juicio de la razón. Quiere edificar “sobre un terreno que sea enteramente mío” (como si en la lengua o en la persona no habitara ya todo un mundo de valores, inclinaciones y deseos). Quiere deshacerse de todas las opiniones recibidas y ser capaz de “distinguir lo verdadero de lo falso”. En este punto, sorprendentemente, deja caer una verdad de la antropología: que hay tantas “razones” como pueblos o culturas. Habiendo aprendido en La Flèche las opiniones de los filósofos, tan discordantes y extravagantes, “que no puede imaginarse nada, por extraño e increíble que sea, que no haya sido sostenido por algún filósofo”, y, habiendo conocido en sus viajes que no todos los pueblos piensan del mismo modo, y que no por ello son bárbaros o salvajes, “sino que muchos hacen tanto uso de la razón como nosotros” y que quien “se ha criado entre los franceses o los alemanes llega a ser muy diferente que quien lo ha hecho entre los chinos o los caníbales”. Tras reconocer estos hechos que uno aprende cuando sale del terruño, del entorno en el que ha sido educado, Descartes pasa a explicar su ambicioso “método” que concibe como universal. Cae en el mismo desliz (un sentido fuerte tiende a imponer su significado más allá de los límites que le dan validez), en el que caerá después Kant con el imperativo categórico y la paz perpetua. Una tendencia que hoy heredan las grandes compañías que controlan la salud y el flujo de la información y que aspiran a la uniformización del cuerpo y el pensamiento.

Aunque hay un gran número de preceptos en la lógica, consideran que bastan cuatro. (1) “No admitir nada como verdadero sin conocer la evidencia, es decir, evitar cuidadosamente la precipitación y la prevención, y no admitir en el juicio nada que no se presente clara y distintamente”. En esta primera premisa del método aparece la palabra mágica de Descartes: evidencia. No aceptar nada que no sea evidente. Bien. ¿Y qué es la evidencia? ¿Algo lógico o sensible? ¿O las dos cosas? La evidencia, nos dice el diccionario, es la certeza, lo que prueba. Observen la retórica. Lo evidente es lo cierto, lo probado. Es como decir que la fortaleza de la roca es su dureza. ¿Cómo se prueba algo? Mediante ciertos medios de conocimiento: percepción, inferencia, comparación, testimonio verbal… ¿Qué nos permite decir cuáles de estos son válidos y cuáles no? ¿Los objetos mismos? ¿La tradición? ¿Los usos y las costumbres? ¿La lógica local? ¿O hay una lógica universal? Las preguntas se multiplican.

Con Descartes, la naturaleza pasa a explicarse mediante dos principios materia-extensión y movimiento. Se olvidan las viejas cualidades aristotélicas que la definían (2) La segunda premisa es analítica. “dividir cada una de las dificultades en tantas partes como sea posible”. Descomponer el problema como se desmonta un motor en sus piezas. El problema con lo vivo es que los órganos no se pueden descomponer. Hacerlo significa que dejen de estar vivos. Y, ¿cómo estudiar lo vivo mediante lo muerto? (3) La tercera premisa reza así: “Conducir ordenadamente mis pensamientos, comenzando por los objetos más simples y más fáciles de conocer, para ir ascendiendo poco a poco”. El problema con esta proposición es que la idea simple sirve para la geometría. La idea de una recta es más simple que la de un poliedro. Para todo lo demás, la idea simple es un contrasentido. Ninguna idea lo es. Si hablamos de la idea de la libertad, del destino o la voluntad, decir que son simples resulta una ingenuidad. Supone ignorar la esencia relacional del habla. Tirando del hilo de cada una de estas “ideas simples” se podrían escribir tratados enteros. Ello no significa un paso de lo simple a lo complejo, pues en cada una de ellas hay un caudal de incalculable de suposiciones y material tácito. (4) La cuarta premisa es un brindis al sol. “No omitir nada, hacer enumeraciones completas”. Hoy sabemos que esto es inviable. Cada ciencia crea su objeto, lo “inventa”. Conforme se sofistican las ciencias se sofistican los objetos, se enriquece el mundo. La enumeración completa exigiría detener la actividad científica.

Descartes se zambulle en la tentación geométrica. Se felicita por su método, que emplea la razón en todo, y se ejercita en él. “Esas largas cadenas de trabadas razones muy simples y fáciles, que los geómetras suelen emplear para llegar a sus más difíciles demostraciones, me había permitido imaginar que todas las cosas que entran en la esfera del conocimiento humano se encadenan de la misma manera.” La palabra clave de esta cita es “imaginar”. Descartes fantasea con esa opción, la hace suya y la impone. Pero no hay nada en ella que se imponga por sí mismo. Es una elección. Decantada por la confusión en que se ha hundido el pensamiento durante el periodo escolástico y auspiciada por la claridad geométrica. Pero pensar que el orden geométrico es el orden de la vida, el orden del todo, no es más que una creencia que poco tiene de racional. El proyecto de Descartes es imponer la claridad de la lógica, el álgebra y la geometría, al resto de las ciencias. Pero estas tres son ciencias teoréticas, no experimentales. Desconocen las vicisitudes de lo que ocurre en los laboratorios. Y, sobre todo, nada saben de las pasiones, que son las que gobiernan la vida, tanto de los pueblos como de los individuos. De ahí a la visión hegeliana, la historia es racional, no hay más que un paso. Pero, como señaló Ortega, ese paso es disparatado. La historia es todo menos racional. La historia es relato y novela pasional. La verdad es lo contrario. La razón es histórica. Por eso cada periodo de la aventura humana de la historia tiene sus propias razones, y aplicar las de una época a otra supone falsificar la historia o no entenderla. Descartes menosprecia la historia, que no alcanza el carácter de ciencia, pues se basa en la experiencia y la memoria, y no en la razón, como las auténticas ciencias. La matemática es el modelo de la ciencia y se inspira en ella para elaborar su método. Y para apuntalar “la unidad sistemática de la ciencia”. Quiere reformar el pensamiento, no la sociedad. Ese método permitirá descubrir la verdad en todos los ámbitos del saber.

Antropología
En la tercera parte del Discurso, Descartes nos muestra su lado estoico. Se percibe la influencia de Montaigne. Nos habla de sus viajes y de cómo “entre los persas y los chinos hay hombres tan sensatos como nosotros”, y que lo más útil es acomodarse a aquellos con los que hay que vivir. Donde fueres haz lo que vieres. A continuación, menciona un lugar común (y falso): que los sentidos nos engañan. Los sentidos no nos pueden engañar porque no hacen inferencias. La que nos engaña es la mente. Cuando veo un palo torcido sumergido en el agua, la vista me dice que está quebrado, el tacto que no lo está. La mente es la que tiene que escoger entre ellos, pero ambos son fieles y ninguno miente.

En esta cuarta parte deja caer la célebre frase: “Pienso, luego soy”, después de convenir que uno puede engañarse tanto en sueños como en la vigilia. Esa verdad le parece tan firme y segura, que ni siquiera “las suposiciones más extravagantes de los escépticos son capaces de conmoverla”. Será el primer principio de su filosofía. La realidad incuestionable de la conciencia. “Al examinar lo que yo era y que podía imaginar que no tenía cuerpo y que no había mundo ni lugar alguno en el que no me encontrase, pero que no podía fingir por ello que yo no fuese.” Dudar de todo no daña a esta verdad, al contrario, reafirma el acto mental de la duda, la propia conciencia de ser. “Conocí por ello que yo era una sustancia cuya total esencia o naturaleza es pensar, y que no necesita, para ser, de lugar alguno ni depende de ninguna cosa material”. Y que ese yo es cosa totalmente distinta del cuerpo y es más fácil de conocer que el propio cuerpo.

Con estas reflexiones, Descartes tiene ya un pilar seguro sobre el que edificar su filosofía. Y como es más perfecto conocer que dudar, se propone encontrar algo que sea más perfecto que el yo que duda. La solución no es buscar en las cosas exteriores, el cielo, la tierra, la luz, el calor, pues no ve en dichas cosas “nada que me pareciese superior a mí”. De hecho, si esas cosas tienen alguna verdad, “dependen de mi naturaleza”. “Pero no sucede lo mismo con la idea de un ser más perfecto que mi ser. Es imposible que esa idea proceda de la nada. Y por ser igualmente repugnante la idea de que lo más perfecto dependa de lo imperfecto, que pensar que de la nada proceda algo, esa idea no podía proceder de mí mismo. De suerte que esa idea tenía que haber sido puesta en mí por una naturaleza que fuera más perfecta que yo y que poseyera todas las perfecciones.” Así confirma Descartes la existencia de Dios y “que no era yo el único ser que existe”. Dios, cuya evidencia es más clara que las cosas externas (es más cierto que hay Dios que el hecho de que tenemos cuerpo o que existe el sol), se deduce de la idea misma de perfección que hay en el pensamiento. “Es absolutamente necesario que haya otro ser más perfecto de quien yo dependiese y de quien hubiese adquirido todo cuanto poseía.” En la definición de ese ser, Descartes ya no es tan original como en su forma de establecerlo. Ese ser debe poseer todas las perfecciones: ser infinito, inmutable, eterno, omnisciente y omnipotente. La duda y la tristeza no hacen mella en él. Y, “sin él no podría subsistir ni un solo momento”. Descartes recoge la idea escolástica de la sustancia: la dependencia es un defecto, no puede estar en Dios. Dios no depende de nada, aunque todos los seres dependan de él. Dios es uno. Esa unidad la compartirán todas las ciencias. Y esa unidad se logrará mediante la divina perfección geométrica. Spinoza también caerá en esa trampa, y tratará de fundamentar la ética en la geometría. La cuadratura del círculo.

El Mundo o Tratado de la luz constituye la física de Descartes. No lo publica en vida por temor a la Inquisición. Ha pasado un siglo desde que Copérnico diera a conocer su revolucionaria cosmología. Descartes abandona la visión de Aristóteles (que no se molesta en refutar, como hace Galileo) y la sustituye por una física mecanicista. Ese giro constituye el punto de partida del mundo moderno. Leibniz, Brentano y Whitehead tratarán de recuperar al Estagirita, pero con escaso éxito. El mundo de Aristóteles es todavía un mundo de cualidades, donde algunos cuerpos caen y otros, como el vapor o el fuego, ascienden. Un mundo en el que las cosas son capaces de emprender acciones y donde éstas tienen cualidades (frio, caliente, húmedo, seco) y cuya composición se explica mediante los elementos (tierra, agua, fuego, aire). En el mundo de Aristóteles los seres y las cosas del mundo natural tienen un principio interno de movimiento. La materia está, en cierto sentido, viva, y puede realizar movimientos sin ser empujada o forzada por algo externo. Lo que define la physis de Aristóteles es esa consideración dinámica de la materia, el reconocimiento de un principio interno y activo en ella. De ahí que Descartes la llame “física animista”, que pretende sustituir por una “mecanicista”. Se podría decir que, en el Estagirita la física se pliega a la biología, mientras que en el francés sucede lo contrario. Aristóteles concibe la materia con una forma interna, un principio de funcionamiento no reducible a la suma de las partes que integran el cuerpo y tampoco a fuerzas externas. Si sólo fuera un conjunto de piezas, no tendría capacidad operativa. Cada cuerpo está, para Aristóteles, compuesto de materia y forma, siendo ésta la responsable de las transformaciones a las que se ve sometida. Sin la forma, la materia sería estática y no proteica, perdería su dinamismo, espontaneidad y capacidad de transformación.

Busto del filósofo René Descartes en su casa natal, en el pueblo francés que lleva su nombre. LÉONARD DE SERRES

Para Descartes, Aristóteles proyecta sobre los cuerpos un dinamismo que no tienen. La distinción dentro-fuera sólo tiene sentido en un sujeto, no en un objeto. Conferir una interioridad a las cosas es sólo crear confusión. Hay que olvidarse de los principios formales ocultos. Los cuerpos inanimados pueden explicarse sin recurrir a otra cosa que no sea su tamaño, figura y movimiento. La ciencia de la materia debe ser la ciencia de la exterioridad, de la extensión sin cualidades, acciones o formas internas. La madera, en Aristóteles, tiene la cualidad del calor, por eso arde. El fuego tiene la cualidad del aire, por eso asciende. Descartes propone prescindir de todas las cualidades y limitarse a la extensión del cuerpo en las tres direcciones del espacio y al movimiento de sus partes. Extensión y movimiento son para el filósofo francés lo únicos principios que dan razón del comportamiento de la materia. Y el modo de análisis será el aritmético y el geométrico. Un modo claro y distinto, autoevidente. La matemática se convierte en el método de la ciencia. Sólo podremos conocer de la materia lo cuantitativo, aquello que es susceptible de magnitud.

La experiencia que nos pone en contacto con el mundo exterior es la experiencia sensible. Una experiencia que tiene lugar mediante la percepción de ciertas cualidades, asociando los objetos a ciertas sensaciones que experimentamos. El agua es dúctil, templada, burbujeante, el metal es frío, el fuego quema, la madera es rugosa, etc. Descartes nos pide que olvidemos todo eso. Nos dice que el agua, el metal, el fuego o la madera son mera extensión (longitud, anchura y profundidad) y movimiento de sus partes. Esas cualidades que experimentábamos no son características de la materia por sí misma, sino un efecto de nuestra sensibilidad. Se produce así un hiato entre nuestra experiencia y la realidad (que es mera extensión y movimiento). Obsérvese el dislate: sólo la extensión sin cualidades garantiza un conocimiento claro y distinto de la materia.

La naturaleza pasa a explicarse mediante dos principios materia-extensión y movimiento. Se olvidan las viejas cualidades aristotélicas que la definían. Todo queda en función del tamaño y el movimiento. Hay una sola materia homogénea, derivándose toda diferencia del tamaño y movimiento de sus partes. Todo ello en un universo lleno, donde no existe el vacío. Esa “indiferencia” justifica la dominación de la Naturaleza. El sueño de apoderarse del mundo, de utilizarlo en función de los propios intereses, deja de ser diabólico para convertirse en el ideal científico.

Descartes, al que apenas interesaba la Antigüedad, sigue, probablemente si saberlo, una antigua intuición gnóstica. Es el primer pensador que logra sacar al hombre de la Naturaleza. Piensa fuera de ella y de ella se sirve a conveniencia. De ahí que con él se inicie la época moderna: inaugura una nueva sensibilidad. Las cosas del mundo carecen de cualidades (aunque nos lo parezca), son meros mecanismos y el mecanismo permite la manipulación, la intervención artera y la distorsión al servicio de intereses particulares. Hoy sabemos que el mecanicismo es una visión infiel y deformante del mundo natural, pero en su momento permitió esa conquista de la Naturaleza que, desde entonces, no se ha detenido. Y conquista aquí significa dominación y sometimiento, cumplimiento del viejo mandato bíblico.

Las leyes naturales, las reglas según las cuales se realizan los cambios, tiene su fundamento en la inmutabilidad de Dios. El mito de lo inmutable es el mito del matemático, del cielo platónico y las verdades eternas. De ese mito se apodera Descartes: la ley de la persistencia. Lo que es, permanece, es también la ley de la conservación, del movimiento (entonces), luego, de la energía. Una ley que se traducirá en dos leyes fundamentales de la Física: la ley de inercia y el principio de conservación de la cantidad de movimiento. En carta a Mersenne, escribe: “Las verdades matemáticas, que denomináis eternas, han sido establecidas por Dios y dependen enteramente de Él, los mismo que el resto de las criaturas”. Descartes abandona la física y recurre a la metafísica para dar cuenta de la existencia del movimiento. Un problema que no tiene Aristóteles, para quien el universo ha existido siempre y no es necesario dar cuenta de un origen u ordenación primordial. “Es Dios quien ha establecido esas leyes en la naturaleza como un rey que establece las leyes de su reino.” Las leyes físicas son, para Descartes, leyes matemáticas imprimidas por Dios a la naturaleza. La idea permanecerá, incluso cuando se borre a Dios de la ecuación, y sigue vigente en la Física contemporánea.

El universo está lleno, no existe el vacío. El plenum cartesiano resulta de la identificación entre materia y extensión. No permite el movimiento simple y rectilíneo (pues todo está lleno), cada movimiento de la materia es circunstancial, acomodo en una habitación llena. La presencia de otros cuerpos es resultado de la circularidad o irregularidad del movimiento (frente a la divina recta, afín al dios inmutable). Todo ha de moverse para que algo se mueva. Hoy sabemos que el llamado “estado de reposo” o la llamada “ausencia de influencias externas” son estados inexistentes. Nada está quieto en el universo y nada deja de experimentar el paisaje o circunstancia que lo rodea. Pero Descartes rechaza atribuir fuerza a la materia. Leibniz, para quien la materia es esencialmente fuerza, se revelará contra esta concepción. Descartes ha preferido la claridad y distinción asociadas a la geometría. La materia debe entenderse según la figura, la magnitud, la posición y el movimiento (cambio de posición), y no según un principio activo interno. Todo es exterioridad. Y Dios es la primera causa del movimiento. La Física actual ha constatado la imposibilidad de acceder a la interioridad de la materia. Hemos penetrado en el átomo, pero, si tratamos de romper una partícula (con un acelerador como el LHC), la materia se trasmuta en otra cosa y se nos muestra esencialmente evasiva, tímida y reservada respecto a sus interioridades. Un experimento que desmiente la idea de que la materia “puede dividirse en todas las partes y según todas las figuras que podamos imaginar”. Este experimento, paradójicamente, confirma la hipótesis cartesiana (de hecho, es una consecuencia de ella). Sin embargo, la Física cuántica nos muestra un mundo de materia activa, más afín a la visión de Aristóteles, donde la matera es toda ella radiactiva y la materia estable sólo lo es aparentemente (en plazos determinados de tiempo). Un mundo donde la materia, en su contacto con la luz, se “excita”, para posteriormente emitir esa luz de un modo espontaneo y, hasta cierto punto, imprevisible. El la Física del átomo la materia parece respirar luz.

Tras las invenciones, también imaginarias, de la teoría cuántica, hemos aprendido que las cosas podrían ser de otro modo. Leer matemáticamente la naturaleza no significa entenderla. Al contrario, es más bien apresarla, obligarla a hablar un determinado lenguaje. Un lenguaje homogéneo (más o menos tedioso), compuesto por relaciones entre magnitudes, que ofrece un cuadro preciso, exacto y, por lo mismo, reductor, deformante e infiel. La vida es pura inexactitud. La vida es chapucera. Avanza en una dirección y, si encuentra un obstáculo, retrocede o cambia de dirección. Se rige no por la pulcra geometría, sino por la práctica del “punto gordo”, ese que pintábamos cuando, en un problema geométrico, las intersecciones no coincidían en el punto debido.

La geometría es, además, imposición. Tiene algo de imperial, como el ejército francés. Desde la perspectiva de la razón vital (si nos ponemos orteguianos), podríamos decir que la geometría y el álgebra son orgullos de juventud. Por eso son altivas, tienen complejo de superioridad y van por ahí perdonando la vida a las demás ciencias, que no son sino remedos, más o menos chapuceros, de idealidad. El racionalismo es imperial y coercitivo. Impone su juego. La naturaleza, siempre complaciente, habla el lenguaje que le propongamos. Pero ello no significa que tenga “un” lenguaje. Tiene muchos, todos los que queramos proyectar sobre ella. Esos lenguajes pueden ser más o menos restrictivos o liberadores. La elección del lenguaje abrirá o cerrará vías hacia la simpatía, la conexión o la indiferencia, hacia la sintonía o la manipulación. De hecho, la misma naturaleza puede ser vista como un lenguaje simbólico. Ella puede ser, como decía Emerson, espejo del alma. En su reflejo, nuestra alma mecanizada mecaniza el universo. ¿Podremos cambiarla?

martes, 22 de marzo de 2022

_- G, el diminuto número sin el que la vida no existiría

_- G Es un número que Newton descubrió, Cavendish valoró y Einstein entendió.

6,67 x 10-¹¹ o 0,000000000067 es un número diminuto pero sin él, la vida, el Universo y todo simplemente no existiría.

Eso es porque ese número dicta la fuerza de gravedad, esa atracción constante que toda materia ejerce sobre el resto de materia, que es sorprendentemente ubicua pero también increíblemente débil.

Su potencia se cuantifica con la llamada constante gravitacional, un número conocido sencillamente como G.

Y si quieres experimentar su debilidad sólo tienes que levantar los brazos horizontalmente.

Su debilidad se evidencia con acciones tan comunes como ésta.

Toda la fuerza de la masa de la Tierra hala tus brazos hacia abajo. No obstante, no te cuesta mucho esfuerzo vencerla.

Piensa que un pequeño imán puede pegarse a la puerta de tu nevera y hasta sostener otras cosas mientras que resiste la fuerza de la gravedad con sólo la del magnetismo.

Fue debido a su extremada pequeñez que, tras descubrir la Ley de Gravitación Universal, Isaac Newton incluyó G en su ecuación pero no lo pudo calcular.

Pero un siglo más tarde, un inglés llamado Henry Cavendish se planteó el reto de determinar el valor de G y, por ende, la fuerza de la gravedad.

Cavendish era un hombre adinerado del Londres del siglo XVIII, un poco excéntrico y quizás triste, pues no tenía muchos amigos.

No hablaba casi con nadie, ni siquiera con las doncellas que trabajaban en su casa, pues su timidez le impedía hablar con mujeres. Les tenía que dejar mensajes en la mesa del hall para comunicarles cosas como qué le apetecía almorzar.

Así que dedicó toda su vida a la ciencia, sin que ningún otro interés lo distrajera.

Henry Cavendish además mostró que los gases se podrían pesar, que el aire es una mezcla y que el agua no es un elemento. En física, mostró que la densidad de la Tierra era 5,5 veces mayor que la del agua. Gran parte de su física fue inédita hasta que James Clerk Maxwell lo publicó en la década de 1870, y por lo tanto no fue tan influyente como podría haber sido.

Para encontrar el valor exacto de G, construyó un aparato.

"El aparato es muy simple. Consiste de un brazo de madera de 6 pies de longitud hecho de manera que sea fuerte pero liviano. El brazo está suspendido en posición horizontal con un delgado cable de seda de 40 pulgadas, y de cada extremo cuelga una esfera de plomo de unas dos pulgadas de diámetro.

"Todo está encerrado en una caja de madera, para defenderlo del viento".

Cerca de las dos bolas que Cavendish menciona, puso otras dos esferas estacionarias, para que hubiera una atracción que retorciera el aparato y la fibra de seda. Añadió un espejo de manera que el movimiento se reflejara en la pared, para verlo mejor.

Esa desviación era proporcional a la fuerza de la atracción gravitacional entre las bolas grandes estacionarias y las pequeñas.

El problema es que estas últimas se podían mover con cualquier vibración, algo que Cavendish tuvo en cuenta.
                                                     


Modelo del aparato de Cavendish. "Resuelto a prevenir errores, decidí poner el aparato en una habitación que permaneciera constantemente cerrada y observarlo desde afuera con un telescopio".

Con todo ese cuidado, encontró la respuesta... ese diminuto número con el que empezamos:

G = 6,67 x 10-¹¹ Nm²/kg²
Al verlo escrito así, a quienes no somos expertos, ya no nos parece tan sencillo, así que le preguntamos al astrofísico y escritor de ciencia Marcus Chown cómo se define G.

"Su definición exacta es la fuerza gravitacional entre dos masas de 2 kilogramos que están a un metro de distancia".

"Como es una fuerza tan fantásticamente pequeña sólo tiene un efecto apreciable a escala planetaria: cuando la masa es grande".

Con sólo la fuerza de G, a un corredor de 100 metros le tomaría un año llegar a la meta.

La fuerza más débil y más importante
Medir una fuerza tan diminuta fue una hazaña tan impresionante que muchos historiadores, admirados por el ingenio y meticulosidad de Cavendish, le adjudicaron la etiqueta de "primer experimento físico moderno".

El tímido científico había revelado el valor de la menos potente pero más importante fuerza en el Universo.

Con el correr de los años, otros científicos fueron aportando aún más precisión, algo que beneficia particularmente a los viajeros del espacio.

Si quieres enviar una nave a otro planeta del Sistema Solar, por ejemplo, más te vale calcular bien G pues el efecto honda gravitacional o asistencia gravitatoria puede desviarla tanto que nunca llegará a su destino.

Un misterioso bamboleo
Por años, los científicos pensaron que el enigma de la gravedad estaba resuelto: Newton encontró la ecuación y Cavendish el valor de la G que aparecía en ella.

La fórmula parecía predecir todos los fenómenos terrestres y celestiales.

Pero en la década de 1850s los astrónomos notaron un misterioso bamboleo en la órbita del planeta Mercurio.

Algo extraño pasaba con Mercurio.

Hubo varios intentos de explicarlo, sin cuestionar la ecuación de Newton.

Una de las teorías fue que había otro planeta, llamado Vulcano, en la misma órbita.

Pero en 1915, en la Academia Prusiana de las Ciencias finalmente se publicó la solución a ese particular rompecabezas... y varios otros: no sólo la teoría de Newton estaba errada sino que había que cambiar fundamentalmente la idea que se tenía de la realidad.

El responsable de este desbarajuste de la visión que se tenía del Universo fue Albert Einstein quien, basado en su Teoría de la Relatividad General, había comprendido que si el espacio-tiempo es curvo, cuando las cosas caen en un campo gravitacional, siguen las curvas naturales del espacio.

No obstante, no todo era nuevo en la flamante fórmula de la gravedad pues seguía dependiendo del diminuto G.

Einstein estaba en lo cierto: el "monstruo gravitatorio" que permitió comprobar la teoría de la relatividad en condiciones extremas

Einstein se quedó con la G.

La teoría de Einstein con la medición de Cavendish parecen poder describir con precisión cómo cada trozo del Universo atrae a todos los otros trozos del Universo, desde las fuerzas que hacen que una estrella colapse, hasta las que mantienen galaxias enteras juntas.

Y todo esto, ¿afecta tu vida?
Muchísimo más que 0,000000000067.

Si su valor fuera diferente, nada sería igual. De hecho, muy probablemente no existiríamos.

Si la constante gravitacional hubiera sido 2% más alta, la fuerza de gravedad sería más potente, lo que significaría que la materia en el centro del Sol estaría comprimida, y cuando las cosas se comprimen la temperatura aumenta.

El Sol habría quemado todo su combustible en mucho menos de 2.000 millones de años. Y, dado que los organismos multicelulares tomaron 3.000 millones de años en aparecer, eso significa que no habría habido vida.

No sólo estamos hechos de polvo de estrellas; sin ellas, no existiríamos.

Un Universo sin estrellas para iluminar y calentar los planetas ni para producir con sus reacciones termonucleares mucho carbono, hidrógeno y oxígeno, sería un espacio negro con astros muertos.

Así que si G hubiera sido más fuerte, las estrellas se habrían quemado demasiado pronto, y la vida no habría tenido la oportunidad de evolucionar.

Si hubiera sido más débil, la situación habría sido igualmente lúgubre pues las estrellas ni siquiera se habrían podido formar: no habría soles.

Por suerte, G no es demasiado fuerte o demasiado débil: está perfectamente sintonizado para la vida.

* Este artículo esta basado en parte de la serie de la BBC "Simon Singh's Numbers".

viernes, 9 de abril de 2021

La batalla de la gravedad: Newton vs. Einstein




Fuentes: TopoExpress 

Nota de edición: Tal día como hoy [31 de marzo] de 1727 fallecía en Londres el gran astrónomo, físico y matemático Isaac Newton. ¿Por qué su teoría de la gravedad, considerada como suficiente por los físicos de los dos siglos anteriores, sería sustituida por la de Einstein?

Las ideas de Einstein eran tan iconoclastas que los representantes de la comunidad científica convencional necesitaron algo de tiempo para aceptar a este sedentario funcionario entre sus filas. Aunque publicó su teoría especial de la relatividad en 1905, no fue hasta 1908 que obtuvo su primer cargo académico en la Universidad de Berna. Entre 1905 y 1908, Einstein continuó trabajando en la oficina de patentes de Berna, donde fue promovido a “técnico experto de segunda clase” y donde dispuso del tiempo suficiente para proseguir sus esfuerzos encaminados a ampliar el poder y el alcance de su teoría de la relatividad.

La teoría especial de la relatividad lleva la etiqueta de especial porque se aplica solamente a situaciones especiales, concretamente a aquellas en las que los objetos se mueven a una velocidad constante. En otras palabras, podía ocuparse de situaciones como Bob observando el tren de Alice viajando a una velocidad constante y en línea recta, pero no con un tren que estuviese acelerando o reduciendo la velocidad. Consiguientemente, Einstein intentó reformular su teoría de modo que sirviera para tratar aquellas situaciones en las que se produjera una aceleración o una deceleración. Esta ampliación de la relatividad especial sería pronto conocida como relatividad general, porque podía aplicarse a situación más generales.

Cuando Einstein hizo su primer progreso en la construcción de la relatividad general en 1907, se refirió al mismo como “el pensamiento más feliz de mi vida”. Pero lo que vino a continuación fueron ocho años de suplicio. A un amigo le contó que la relatividad general le obsesionaba tanto que le estaba haciendo descuidar todos los demás aspectos de su vida: “No tengo tiempo de escribir porque estoy ocupado en cosas realmente grandes. Día y noche me devano los sesos tratando de penetrar más profundamente en lo que he descubierto estos dos últimos años y que constituye un avance sin precedentes en los problemas fundamentales de la Física”.

Al hablar de “cosas realmente grandes” y de “problemas fundamentales”, Einstein se estaba refiriendo al hecho de que la teoría general de la relatividad parecía estarle llevando hacia una teoría de la gravedad completamente nueva. Si Einstein estaba en lo cierto, los físicos se verían obligados a poner en entredicho la obra de Isaac Newton, uno de los iconos de la Física.

Newton nació en unas circunstancias trágicas el día de Navidad de 1642: su padre había muerto sólo tres meses antes. Cuando Isaac era todavía un niño, su madre se casó en segundas nupcias con un párroco de sesenta y tres años, Barnabas Smith, que se negó a aceptar a Isaac en su hogar. Fue educado por sus abuelos y a medida que iban pasando los años fue concibiendo un odio cada vez mayor por su madre y su padrastro, que le habían abandonado. De hecho, cuando era un estudiante universitario, compiló un catálogo de los pecados de su niñez que incluía la admisión de “haber amenazado a mi padre y a mi madre con quemarlos a ellos y a la casa en que vivían”.

No tiene nada de extraño, pues, que, al crecer, Newton se convirtiera en un hombre amargado, solitario y en ocasiones cruel. Por ejemplo, cuando fue nombrado director de la Casa de la Moneda Real en 1696, puso en práctica un severo régimen para capturar a los falsificadores, asegurándose de que los convictos de este delito fueran colgados y descuartizados. La falsificación de moneda había llevado a la Gran Bretaña al borde del colapso económico, y Newton consideraba necesarios tales castigos. Además de hacer gala de su brutalidad, Newton utilizó su inteligencia para salvar la moneda nacional. Una de las innovaciones más importantes que introdujo en la Casa de la Moneda fue la de la acuñación con cordoncillo para luchar contra la práctica del recorte, por la que los falsificadores laminaban los bordes de las monedas y utilizaban los pedazos para hacer nuevas monedas.

En reconocimiento a la contribución de Newton, la moneda británica de 2 libras emitida en 1997 tenía la frase SUBIDO A HOMBROS DE GIGANTES grabada en el cordoncillo. Estas palabras están sacadas de una carta que Newton mandó a su colega Robert Hooke en la que escribió: “Si he visto más lejos que otros es porque me he subido a los hombros de unos gigantes”. Esta frase parece una muestra de modestia, una admisión de que las ideas del propio Newton se basaron en las de predecesores ilustres como Galileo y Pitágoras. En realidad, la frase era una referencia velada y maliciosa a lo encorvada que tenía la espalda Hooke. En otras palabras, Newton estaba dando a entender que Hooke no era ningún gigante físico, y por implicación, tampoco un gigante intelectual.

Fueran cuales fuesen sus defectos personales, Newton hizo una contribución sin igual a la ciencia del siglo XVII. Sentó los fundamentos de una nueva era científica con una intensa actividad investigadora que duró apenas dieciocho meses y que culminó en 1666 en lo que hoy se conoce como el annus mirabilis de Newton. La expresión proviene del título de un poema de John Dryden sobre otros acontecimientos sensacionales que tuvieron lugar en 1666, como el hecho de que Londres sobreviviera al Gran Incendio y como la victoria de la flota británica sobre los holandeses. Los científicos, sin embargo, consideran que los verdaderos milagros que tuvieron lugar en 1666 fueron los descubrimientos de Newton. Su annus mirabilis comprende importantes avances en ámbitos como el cálculo, la óptica y sobre todo la gravedad.

En esencia, la ley de la gravedad de Newton dice que todos los objetos del universo se atraen mutuamente. Más exactamente, Newton definió la fuerza de atracción entre dos objetos cualesquiera como

F = G x m1 x m2 / r2

La fuerza (F) entre los dos objetos depende de sus masas (m1y m2) –cuanto mayores son las masas, mayor es la fuerza. Además, la fuerza es inversamente proporcional al cuadrado de la distancia entre los dos objetos (r2), lo que significa que la fuerza se va haciendo menor a medida que los objetos se van separando. La constante gravitacional (G) es siempre igual a 6,67 x 10-11 Nm2kg-2, y refleja la fuerza de la gravedad comparada con otras fuerzas como el magnetismo.

El poder de esta fórmula es que condensa todo lo que Copérnico, Kepler y Galileo habían tratado de explicar acerca del sistema solar. Por ejemplo, el hecho de que una manzana caiga al suelo desde el árbol no es porque quiera llegar al centro del universo, sino simplemente porque tanto la Tierra como la manzana tienen masa, y por ello se atraen mutuamente con la fuerza de la gravedad. La manzana acelera hacia la Tierra, y al mismo tiempo la Tierra acelera hacia la manzana, aunque el efecto en la Tierra es imperceptible porque ella es mucho más masiva que la manzana. Asimismo, la ecuación de la gravedad de Newton puede utilizarse para explicar cómo gira la Tierra en torno al Sol porque ambos cuerpos tienen masa y, en consecuencia, se produce una atracción mutua entre ellos. Una vez más, es la Tierra la que gira en torno al Sol y no viceversa porque la Tierra es mucho más masiva que el Sol. De hecho, la fórmula de la gravedad de Newton puede incluso utilizarse para predecir que las lunas y los planetas seguirán unas órbitas elípticas, que es exactamente lo que Kepler demostró después de analizar las observaciones de Tycho Brahe.

Durante varios siglos después de su muerte, la ley de la gravedad de Newton rigió el cosmos. Los científicos asumieron que el problema de la gravedad había sido resuelto y utilizaron la fórmula de Newton para explicarlo todo, desde el vuelo de una flecha a la trayectoria de un cometa. El propio Newton, sin embargo, sospechaba que su comprensión del universo era incompleta: “No sé cuál es la impresión que yo debo producir a los demás, pero a mis ojos no soy más que un niño jugando en la playa y que se divierte al descubrir de vez en cuando un guijarro más liso o una concha más bonita de lo habitual, mientras el gran océano de la verdad se extiende imperturbable ante mí”.

Y fue Albert Einstein el primero en darse cuenta de que en la gravedad de Newton podía haber algo más de lo que él había imaginado. Después de su propio annus mirabilis de 1905, el año en que Einstein publicó varios trabajos de importancia histórica, se concentró en ampliar su teoría especial de la relatividad para formular una teoría más general. Esto comportó una interpretación radicalmente diferente de la gravedad basada en una visión fundamentalmente diferente de cómo los planetas, las lunas y las manzanas se atraen entre sí.

Según Einstein, cuando los físicos y los astrónomos observaban fenómenos en los que intervenía la fuerza de la atracción gravitacional, estaban viendo realmente objetos que reaccionaban a la curvatura del espacio-tiempo . Por ejemplo, Newton habría dicho que una manzana caía al suelo desde el árbol porque había una fuerza de atracción gravitacional mutua entre la manzana y la Tierra, pero Einstein intuía que él disponía ahora de una explicación mejor para esta atracción: la manzana caía al suelo porque quedaba atrapada en el hueco producido en el espacio-tiempo por la masa de la Tierra.

La presencia de objetos en el espacio-tiempo da lugar a una relación bidireccional. La forma del espacio-tiempo influye en el movimiento de los objetos, y al mismo tiempo son estos mismos objetos los que determinan la forma del espacio-tiempo. En otras palabras, las depresiones en el espacio-tiempo que guían al Sol y a los planetas son causadas por estos mismísimos objetos. John Wheeler, uno de los representantes más eximios de la relatividad general en el siglo XX, resumió esta teoría con la siguiente máxima: “La materia le dice al espacio cómo tiene que doblarse; y el espacio le dice a la materia cómo tiene que moverse”. Aunque Wheeler sacrificó la precisión en aras de la concisión (en vez de “espacio” debería haber dicho “espacio-tiempo ”), el suyo sigue siendo un magnífico resumen de la teoría de Einstein.

Esta noción de un espacio-tiempo flexible puede parecer estrafalaria, pero Einstein estaba convencido de que era fundamentalmente correcta. De acuerdo con sus propios criterios estéticos, la relación entre el espacio-tiempo flexible y la gravedad tenía que ser verdadera, o como el propio Einstein decía: “Cuando juzgo una teoría siempre me pregunto: si yo fuera Dios, ¿habría dispuesto las cosas de este modo?”. Pero si Einstein quería convencer al resto del mundo de que estaba en lo cierto, tenía que desarrollar una fórmula que condensase su teoría. Su gran reto fue el de transformar la noción más bien vaga de espacio-tiempo y gravedad más arriba descrita en una teoría formal de la relatividad general expresada de una forma matemáticamente rigurosa.

Einstein necesitaría ocho años de ardua investigación teórica antes de poder sustentar su intuición con una argumentación matemática detallada y razonada, y durante este tiempo sufrió varios contratiempos y tuvo que soportar periodos en los que sus cálculos parecían venirse abajo. El esfuerzo intelectual llevaría a Einstein al borde de una crisis nerviosa. Su estado mental y el nivel de su frustración se perciben en los comentarios que hizo a sus amigos durante estos años. A Marcel Grossman le dijo: “¡Tienes que ayudarme o voy a volverme loco!”. A Paul Ehrenfest le dijo que trabajar en la relatividad era como aguantar “una lluvia de fuego y azufre”. Y en otra carta manifestaba su preocupación por “haber perpetrado una vez más algo relativo a la teoría de la gravitación que de algún modo me expone al peligro de ser confinado en un manicomio”.

El coraje requerido para aventurarse por un territorio intelectual inexplorado no puede subestimarse. En 1913 Max Planck incluso advirtió a Einstein en contra de trabajar en su teoría de la relatividad general: “En mi calidad de amigo debo aconsejarte que lo dejes estar; en primer lugar porque no creo que tengas éxito, y en segundo lugar porque, aunque lo tuvieras, nadie te creería”.

Pero Einstein perseveró, aguantó el suplicio y finalmente completó su teoría de la relatividad general en 1915. Al igual que Newton, Einstein había desarrollado finalmente una fórmula matemática para explicar y calcular la fuerza de la gravedad en cualquier situación imaginable, pero la fórmula de Einstein era muy diferente y se basaba en una premisa completamente diferente –la existencia de un espacio-tiempo flexible.

La teoría de la gravedad de Newton había sido suficiente para los físicos de los dos siglos anteriores, así pues, ¿por qué iban a abandonarla de repente para adoptar la moderna teoría de Einstein? La teoría de Newton podía predecir con éxito el comportamiento de todas las cosas, desde manzanas a planetas, desde balas de cañón a gotas de lluvia, así que ¿qué sentido tenía que Einstein propusiera una nueva teoría?

La respuesta a estas preguntas se encuentra implícita en la naturaleza del progreso científico. Los científicos intentan crear teorías que expliquen y predigan los fenómenos naturales del modo más exacto posible. Una teoría puede funcionar satisfactoriamente durante años, décadas o siglos, pero finalmente los científicos pueden desarrollar y adoptar una teoría mejor, una teoría que sea más precisa o que funcione en una gama más amplia de situaciones y que explique fenómenos previamente inexplicados. Esto fue exactamente lo que sucedió con los primeros astrónomos y su comprensión de la posición de la Tierra en el cosmos. Inicialmente, los astrónomos creían que el Sol orbitaba una Tierra estacionaria y, gracias a los epiciclos y a los deferentes de Ptolomeo, esta era una teoría bastante adecuada. De hecho, los astrónomos la utilizaban para predecir los movimientos de los planetas con un grado de precisión razonable.

Sin embargo, la teoría geocéntrica fue finalmente reemplazada por la teoría heliocéntrica del universo debido a que esa nueva teoría, basada en las órbitas elípticas de Kepler, era más precisa y podía explicar las nuevas observaciones telescópicas, como las fases de Venus. La transición de una teoría a otra fue larga y difícil, pero una vez que la teoría heliocéntrica se hubo impuesto, ya no fue posible volver atrás. De modo parecido, Einstein creía que estaba proporcionando a la Física una teoría de la gravedad mejorada, una teoría más precisa y más cercana a la realidad. En concreto, Einstein sospechaba que la teoría de la gravedad de Newton podía fallar en determinadas circunstancias, mientras que su propia teoría funcionaba en cualquier circunstancia.

Según Einstein, la teoría de Newton produciría resultados incorrectos al predecir fenómenos en aquellas circunstancias en las que la fuerza gravitacional fuese extrema. En consecuencia, para probar que tenía razón, Einstein no tenía más que encontrar uno de estos escenarios y poner a prueba en él tanto su propia teoría como la de Newton. Aquella de las dos teorías que remedase la realidad más exactamente ganaría la competición y se revelaría como la auténtica teoría de la gravedad.

El problema para Einstein era que en la Tierra todos los escenarios comportaban un mismo nivel mediocre de gravitación, y en estas condiciones las dos teorías de la gravedad funcionaban igualmente bien y eran intercambiables. Por consiguiente, comprendió que tenía que buscar fuera de la Tierra y en el espacio para encontrar un entorno con una gravedad extrema que pudiera poner de manifiesto las carencias de la teoría de Newton. Concretamente, sabía que el Sol tiene un campo gravitacional enorme y que el planeta más cercano al Sol, Mercurio, experimentaría una atracción gravitacional muy fuerte. Se preguntó si la atracción del Sol era lo bastante fuerte como para hacer que Mercurio se comportase de una manera inconsistente con la teoría de la gravedad de Newton y perfectamente en consonancia con su propia teoría. El 18 de noviembre de 1915, Einstein dio con el caso que necesitaba –un curioso comportamiento planetario que llevaba décadas preocupando a los astrónomos.

En 1859, el astrónomo francés Urbain Le Verrier había analizado una anomalía en la órbita de Mercurio. El planeta tenía una órbita elíptica, pero en vez de permanecer fija la propia elipse se desplazaba en torno al Sol, tal como se muestra en la Figura 24. La órbita elíptica se va enroscando en torno al Sol dibujando el clásico patrón de un espirógrafo. La variación es muy ligera y equivale tan sólo a 574 segundos de arco por siglo, y se precisan un millón de órbitas y más de 200.000 años para que Mercurio complete su ciclo en torno al Sol y recupere su orientación orbital original.

Los astrónomos habían asumido que el peculiar comportamiento de Mercurio estaba causado por el tirón gravitacional que los demás planetas del sistema solar ejercían sobre su órbita, pero cuando Le Verrier utilizaba la fórmula de la gravedad de Newton encontraba que el efecto combinado de los otros planetas solamente explicaba 531 de los 574 segundos de arco de la variación que se producía cada siglo. Esto significaba que 43 segundos de arco quedaban sin explicar. Según algunos científicos, tenía que haber una influencia extra, no detectada, sobre la órbita de Mercurio que estaba causando estos 43 segundos de arco de variación, algo así como un cinturón interior de asteroides o una luna de Mercurio aún por descubrir. Hubo incluso quien sugería la existencia de un planeta hasta entonces desconocido, llamado Vulcano, en el interior de la órbita de Mercurio. En otras palabras, los astrónomos asumían que la fórmula de la gravedad de Newton era correcta y que el problema estaba en su incapacidad para introducir en la ecuación todos los factores necesarios. Creían que en cuanto encontrasen el nuevo cinturón de asteroides, luna o planeta, podrían rehacer los cálculos y obtener la respuesta correcta de 574 segundos de arco.

Pero Einstein estaba convencido de que no había ningún cinturón de asteroides, luna o planeta por descubrir, y que el problema estaba en la fórmula de la gravedad de Newton. La teoría de Newton funcionaba perfectamente a la hora de describir lo que sucedía dentro del campo de gravedad de la Tierra, pero Einstein estaba seguro de que la extrema gravedad existente cerca del Sol quedaba fuera de la zona de confort de Newton. Esta era una cancha perfecta para la competición entre las dos teorías de la gravitación rivales, y Einstein creía firmemente que su propia teoría podía explicar perfectamente las variaciones que se producían en la órbita de Mercurio.

Se puso, pues, manos a la obra, efectuó los cálculos utilizando su propia fórmula, y el resultado que obtuvo fue el de 574 segundos de arco, lo que coincidía exactamente con la observación. “Durante unos días”, escribió Einstein, “estuve como loco de alegría y excitación”.

Desgraciadamente, la comunidad de los físicos no se quedó totalmente convencida de los cálculos efectuados por Einstein. La comunidad científica es inherentemente conservadora, como ya sabemos, en parte por razones prácticas y en parte por razones emocionales. Si una teoría nueva derroca a otra de más antigua, esta última tiene que ser abandonada y lo que queda de la estructura científica tiene que hacerse cuadrar con la nueva teoría. Una convulsión así solamente se justifica si la comunidad científica está totalmente convencida de que la nueva idea realmente funciona. En otras palabras, la carga de la prueba siempre recae en los defensores de la nueva teoría. La barrera emocional a la aceptación de la misma es igualmente alta. Los científicos de mayor rango, que habían pasado toda la vida creyendo en Newton se mostraban lógicamente reacios a descartar aquello que comprendían y en que confiaban en favor de una teoría advenediza. Mark Twain expresaba esta misma idea de una forma muy perspicaz: “De entrada, ningún científico se mostrará nunca amable con una teoría que no haya propuesto él mismo”.

No tuvo, pues, nada de sorprendente que la comunidad científica se aferrase a su opinión de que la fórmula de Newton era correcta y que los astrónomos antes o después descubrirían un nuevo cuerpo que daría cuenta de la variación en la órbita de Mercurio. Cuando un escrutinio más detallado no reveló signo alguno de la presencia de un cinturón de asteroides, luna o planeta, los astrónomos propusieron otra solución para apuntalar la renqueante teoría de Newton. Cambiando una parte de la ecuación de Newton de r2 a r2,00000016 pudieron salvar más o menos el enfoque clásico y explicar la órbita de Mercurio:

F = G x m1 x m2 / r2,00000016

Pero esto no era más que un truco matemático. No tenía ninguna justificación física, era meramente un intento desesperado de salvar a la teoría de la gravedad de Newton. En realidad, esta clase de retoques ad hoc eran propios de la clase de lógica que había dado lugar anteriormente a que Ptolomeo fuera añadiendo más y más epiciclos a su epicíclica visión de un universo geocéntrico.

Si Einstein quería superar este conservadurismo, vencer a sus críticos y derrocar a Newton, tenía que reunir aún más pruebas en favor de su teoría. Tenía que encontrar otro fenómeno que pudiese ser explicado por su propia teoría y no por la de Newton, algo tan extraordinario que proporcionase una prueba irrefutable, incontrovertible a favor de la gravedad einsteiniana, de la relatividad general y del espacio-tiempo.

Epígrafe del capítulo 2º del libro de Simon Singh Big Bang. El descubrimiento científico más importante…

Fuente: 

lunes, 24 de abril de 2017

Ciencia poética. Lucrecio es el Newton, el Einstein y el Carl Sagan de Roma. Su obra 'De la naturaleza' conserva intacta toda su actualidad.

El libro De la naturaleza ha recorrido más de dos milenios estableciendo una relación fuerte con cada época. Esta edición de Acantilado —muy bella y muy útil— ofrece el original latino de Lucrecio y una de sus mejores traducciones, realizada por Eduard Valentí Fiol. Un libro bilingüe es un instrumento de gran precisión. Este incluye además dos acercamientos contemporáneos: la introducción de Valentí y la presentación de Stephen Greenblatt, muy distintas a pesar de su proximidad. Valentí, heredero de una tradición gloriosa, representa el ideal de la filología moderna a mediados del XX: fijar el texto latino, traducirlo y comentarlo de modo riguroso. Greenblatt traza una semblanza breve y seductora, síntesis de la cultura posmoderna: intérprete libérrimo, relaciona, conecta y sabe llegar, more americano, al gran público, cosa vista con desconfianza por la filología tradicional europea. Su modelo general de una cultura poética encuentra aquí una aplicación perfecta a la ciencia.

El De rerum natura ha sido el clásico preferido por la izquierda moderna. Ateos, materialistas e ilustrados vieron en Lucrecio a uno de los suyos. Lo ejemplifican algunos de sus traductores, como el revolucionario Marchena, el republicano Gil-Albert o el ácrata García Calvo. Greenblatt lo encaja bien en la izquierda posmoderna: su Lucrecio es pacifista, ecologista y tan antiimperialista que resulta incluso antirromano (algo difícil de conciliar con el inolvidable principio de la obra). Por supuesto, también perfila un Lucrecio anticristiano, al superponerle el troquel bipolar de Estados Unidos. Si solo existen creacionistas y darwinistas, Lucrecio cae, con toda razón, del lado de estos últimos, pues explica la desaparición de especies por la supervivencia de los más aptos y es enemigo acérrimo de las religiones. Pero la cuestión requiere algunos matices: en realidad el cristianismo llegó después y fue él el antilucreciano (por antiepicúreo). Otros poetas epicúreos, como Virgilio y Horacio, han gozado de gran aceptación por parte del cristianismo europeo. Existe, por otra parte, una tradición minoritaria de cristianos epicúreos, explorada por Michel Onfray. Y lo esencial: la divinidad está muy presente en el libro. Es una divinidad propia de un filósofo y de un poeta. También de un científico. No es desde luego un Dios religioso. Pero eso es algo que la ciencia actual parece haber dejado en el pasado. Actualísimo es el análisis que hace Lucrecio de la divinización de la Tierra, pues a la vez la desmitifica y la tolera.

Es este uno de los libros mayores del paganismo grecolatino, hecho de una refinada naturalidad cultural. Sin ella, corremos el riesgo de no ver. Por ejemplo: al describir los avatares del texto (que desde el primer momento ha estado al borde de desaparecer varias veces) el propio Greenblatt incurre en una suerte de providencialismo cultural, al retratar a Poggio (el humanista del Renacimiento que salvó el texto) como “el agente por medio del cual sucedió algo importante”. ¿No presupone esta frase una suerte de Providencia, muy contraria, por cierto, al epicureísmo?

Como todos los clásicos, Lucrecio es irreductible a una época o a una ideología, incluso a las suyas. Por eso está a disposición de todos los que han ido llegando a él.

También es un gran liberador. Libera de los fanatismos religiosos, pero también (atención) de las servidumbres del sexo. Como todos los epicúreos, predica un raro ascetismo. Tanto, que lo que este libro científico contiene es una suerte de evangelio de Epicuro, ensalzándolo como a un hombre sagrado. Esta tendencia del racionalismo científico a convertirse en escuela, secta o cuasi-religión es muy interesante. El hecho de que se diera ya en la Antigüedad, y precisamente entre los seguidores del más enemigo de los fanatismos, debería servirnos de aviso.

La ciencia moderna debe mucho a Lucrecio: la biología darwinista, la psicología, como ha visto David Konstan, y, sobre todo, la física: su admirable hipótesis atomista se ha visto confirmada hace solo unas décadas. Paradójicamente (aquí los físicos deberían ayudar a los filólogos) es probable que átomos no sea ya la mejor traducción para las partículas elementales, cuyos movimientos —“batallas y escaramuzas, escuadrón contra escuadrón”— se parecen más a los de los protones.

Poesía, filosofía y ciencia discurren aquí simultáneas. El lector contemporáneo puede disfrutar una cuarta faceta: la de narrador magistral. Poeta del cosmos, Lucrecio es el Newton, el Einstein y el Carl Sagan de Roma. ¿Qué prevalece? La poesía, en la Antigüedad. La ciencia, ahora. Lucrecio transmite una visión general de las cosas (filosófica) con un lenguaje creativo, bello y preciso (es decir, poético) para dar una explicación científica de una realidad que también es bella. En nuestra época la ciencia ha sometido a la filosofía y ha eclipsado a la poesía. Por eso, una traducción en prosa como esta tiene la eficacia de llegar a los científicos, a los filósofos y al gran público.

Como poeta, Lucrecio da voz a la naturaleza. Aborda la imperfección del mundo. Es un entusiasta, “agotado por la larga carrera de la vida”. Usa metáforas (“murallas que rodean el vasto mundo”) y un idioma muy rico (“esplendorosas mieses y ufanos viñedos”). Afronta el amor y la muerte. Emplea mitos. Y a veces incurre en una ingenuidad preciosa. Por ejemplo, cuando afirma que el sol, la luna y las estrellas son exactamente del tamaño que las vemos.

De la naturaleza es uno de los textos más vigentes de la antigüedad. Se encuentra —verdadero prodigio— en las bibliotecas de letras y en las de ciencias. Pensando en Lucrecio, Virgilio llamó afortunado al que conoce las causas de las cosas.

De rerum natura / De la naturaleza. Lucrecio. Prólogo de Stephen Greenblatt. Traducción, prólogo y notas de Eduard Valentí Fiol. Acantilado. Barcelona, 2013. 608 páginas. 33 euros

http://cultura.elpais.com/cultura/2013/08/07/actualidad/1375886296_322245.html

miércoles, 5 de abril de 2017

_--Un mundo sin Tesla

_--El genio y extravagante visionario de la revolución eléctrica se ha convertido en personaje de novela e icono de la cultura pop.

Todos los genios incomprendidos, con perdón por la redundancia, merecerían la segunda oportunidad que el ángel concedió a James Stewart en Qué bello es vivir: mostrarle cómo sería el mundo si él no hubiera existido. No para impedir que se tiren por un puente, como en la película de Frank Capra, sino para que se mueran sabiendo que tenían razón. Después de una vida entera aguantando a los beocios, esa tiene que ser la mejor versión para genios del descanse en paz al que todos aspiramos.

El ángel de Capra tuvo que hilar fino con el personaje de Stewart, que al fin y al cabo era un banquero y había arruinado a medio pueblo, con perdón otra vez por la redundancia. Su trabajo habría sido mucho más fácil con los genios de verdad. Cervantes y Shakespeare, Galileo y Newton, Van Gogh y Picasso nunca destacaron por su modestia, ciertamente, pero hasta ellos se quedarían boquiabiertos si pudieran ver lo que significan para nosotros, si pudieran saber que sin ellos la literatura, la ciencia y el arte no solo serían muy distintos, sino también mucho peores.

Con ninguno, sin embargo, lo habría tenido el ángel más fácil que con Nikola Tesla, inventor de la bobina de inducción que inauguró la era de la radio, artífice del sistema de transmisión que nos lleva la energía eléctrica a casa, descubridor de un principio extraordinariamente simple, eficaz y versátil -como todas las grandes ideas- en el que se basan nuestros motores eléctricos y casi cualquier otra cosa que lleve un enchufe. No hace falta un ángel para imaginar un mundo sin Tesla. Basta un apagón. De los gordos.

Todo el mundo ha oído hablar de Edison, aunque solo sea porque inventar la bombilla es una metáfora casi automática de tener una idea luminosa. Los seguidores de Tesla son más raros. Escasos y raros: tycoons de Silicon Valley, visionarios verdes del coche eléctrico, artistas de la vanguardia australiana, bandas de culto del más estricto tecno-pop, adictos a los videojuegos, teóricos de la conspiración, avistadores de ovnis y Thomas Pynchon. No me interpreten mal, yo adoro a Pynchon, pero no creo que sea la vía para entender el genio de Tesla, ni ninguna otra cosa. El último en incorporarse al club de fans, el novelista francés Jean Echenoz, es seguramente el más normal de la lista, por extraño que les pueda resultar ese adjetivo a sus lectores. Y su última novela, Relámpagos (Anagrama), es sin duda la mejor forma de introducirse en el universo del gran innovador de origen serbio.

El libro de Echenoz no es una biografía novelada de Tesla. Es mucho mejor que eso. Por ejemplo, un biógrafo nunca escribiría: "Temible, temido por su poder y su endiablado mal genio, John Pierpont Morgan lo es también por su clarividencia". Un biógrafo podría cargarse a Edison en 50 páginas, pero no en una frase, ni desde luego por "ir siempre embutido en batas de algodón beige confeccionadas por su mujer". Vale, ya sabemos que ese no es Edison, sino un personaje de ficción que se llama igual. Muy bien. Quien quiera rigor que se lea las 50 páginas del biógrafo. Yo me quedo con la bata beige.

Siempre hemos estado fascinados por los genios. Y siempre hemos tendido a exagerar sobre ellos. No nos basta que Arquímedes penetrara en los secretos de la esfera, descubriera el principio del empuje hidrostático -el "momento eureka" por antonomasia- y fuera uno de los mayores matemáticos de la historia. Además queremos que destruyera la flota romana quemando sus velas con un ingenioso sistema de espejos que concentraban la poderosa luz del sol del Mediterráneo, y que esa genialidad le costara la vida. Una bella y dramática historia que, a diferencia de las fórmulas de la esfera, tiene todas las papeletas para ser mentira, pues los intentos modernos de reproducir la hazaña no han logrado quemar ni un pañuelo a esa distancia.

Lo mismo pasa con Tesla. Sus grandes aportaciones a la tecnología de la electricidad, citadas arriba, no les deben parecer suficientes a sus admiradores, que además quieren ver al inventor como un alma de cántaro, un altruista obsesionado por ayudar a la humanidad, "el genio al que robaron la luz", el Prometeo moderno que sufrió el eterno castigo del olvido por haber arrebatado la energía electromagnética a las oscuras fuerzas del poder y la industria para entregársela al pueblo llano libre de todo costo, el descubridor de los nexos ocultos entre la física y la psique y la clave secreta de todas las conspiraciones y contubernios de los que se pueda conversar en un taxi. Historias no solo falsas, sino tan feas como Edison. La realidad es mucho más interesante que todo eso.

El descubrimiento esencial que disparó la revolución de la energía eléctrica no fue obra de Tesla, ni pudo serlo, pues ocurrió exactamente 25 años antes de su nacimiento. Su nombre técnico no carece de cierto lirismo -inducción magnética-, y es uno de los mayores hitos no solo de la tecnología, sino también de la ciencia, pues permitió entender el fenómeno de la electricidad y el magnetismo con una profundidad y elegancia matemática que la ciencia no había conocido desde la teoría gravitatoria de Newton, y que no volvería a conocer hasta la teoría de la relatividad de Einstein. La historia demuestra que ese tipo de entendimiento profundo precede a todas las revoluciones tecnológicas.

En 1831, Michael Faraday, que pese a ser un científico aficionado sin educación formal ha pasado a la historia como el mejor experimentalista de todos los tiempos, descubrió que un campo magnético cambiante es capaz de crear una corriente eléctrica en un cable. Podía hacerlo moviendo un imán cerca de un cable, o moviendo el cable cerca del imán. En cualquier caso, la corriente eléctrica era siempre más fuerte cuanto más rápido fuera el movimiento. Este simple hecho mostró que la electricidad y el magnetismo no eran dos cosas, sino dos formas de mirar a una sola. Todos los grandes saltos en la comprensión científica del mundo se basan en unificaciones de ese tipo. Nuevos nexos ocultos entre conceptos dispares. Literalmente, nuevas metáforas.

Tesla tampoco inventó las aplicaciones tecnológicas de ese avance del conocimiento puro. El descubrimiento de Faraday sugería de inmediato una forma de convertir la energía mecánica -los movimientos del imán- en energía eléctrica, y no había pasado ni un año cuando el primer generador eléctrico se presentó en París. Hacia la mitad del siglo, con Tesla aún sin nacer, varios países fabricaban ya generadores eléctricos comerciales. El descubrimiento de Faraday también indicaba la posibilidad contraria: convertir la energía eléctrica en energía mecánica, es decir, construir un motor eléctrico. Tampoco fue Tesla, sino de nuevo Faraday, quien descubrió la corriente alterna.

Tesla fue más bien el Steve Jobs de la revolución eléctrica, el visionario con mentalidad emprendedora, y el más hábil para llevar a la práctica las ideas científicas de otros, y muy en particular las del propio Faraday.

La otra parte del mito, o del Tesla que protagoniza los tebeos y los videojuegos, es la del genio incomprendido, el innovador altruista "al que le robaron la luz". Este cliché tiene unos fundamentos tan endebles como el primero, pero también sirve para ilustrar la íntima, fructífera y turbulenta relación de la innovación con las finanzas.

En 1885, solo un año después de desembarcar en el puerto de Nueva York con una libreta llena de cálculos, unos cuantos poemas y cuatro centavos en el bolsillo, Tesla encontró justo lo que había ido a buscar a América: un empresario interesado en sus ideas. George Westinghouse se interesó en la gran idea del inventor, el motor de corriente alterna, e hizo lo que suelen hacer los empresarios en esos casos: comprarle los derechos de patente. Westinghouse no estaba robando las ideas de Tesla, sino permitiéndolas entrar en el juego. Y justo a tiempo.

Su archienemigo Edison estaba empezando a comercializar los motores eléctricos de corriente continua, y hasta había convencido ya a algunos Gobiernos europeos, entre ellos el alemán, para que adoptaran ese sistema. El motor de corriente alterna ideado por Tesla era -y sigue siendo- mucho más eficaz que el de Edison, pero nunca habría podido competir con él sin la audacia y el dinero de Westinghouse. La lucha fue larga y feroz, pero los motores de Tesla y Westinghouse se acabaron imponiendo, y con ellos los sistemas de distribución de corriente alterna se usan en todo el mundo.

El estilo vehemente y efectista del inventor ha contribuido a alimentar el mito, y el cliché. Cuando la poderosa corriente alterna empezó a suscitar temores en una parte del público y la prensa, organizó una demostración pública en la que su propio cuerpo sirvió de conductor para encender un deslumbrante panel de bombillas. Convenció a Westinghouse para instalar sus primeros sistemas en las cataratas del Niágara. Inventó el primer aparato dirigido por control remoto -un barco de juguete- y lo presentó en público con una demostración en el Madison Square Garden de Nueva York. Encendió 200 lámparas desde una distancia de 40 kilómetros, produjo rayos de 40 metros, aseguró que había inventado un rayo capaz de destruir 10.000 aviones enemigos y, para colmo de delicias entre sus fans, anunció haber recibido señales de una civilización extraterrestre.

Si Tesla no hubiera existido, la gente se lo hubiera inventado de todas formas. Un trabajo fácil para el ángel de Capra.

-Relámpagos. Jean Echenoz. Traducción de Javier Albiñana. Anagrama. Barcelona, 2012. 160 páginas. 15,90 euros (electrónico: 11,99). 
-Yo y la energía. Nikola Tesla. Presentación de Miguel Á. Delgado. Traducción de Cristina Núñez Pereira. Turner. Madrid, 2011. 312 páginas. 19,90 euros. 
-Nikola Tesla: el genio al que le robaron la luz. Margaret Cheney. Traducción de Gregorio Cantera. Turner. Madrid, 2010. 424 páginas. 28 euros. 
-Nikola Tesla. Vida y descubrimientos del más genial inventor del siglo XX. Massimo Teodorani. Sirio. Málaga, 2011. 136 páginas. 11,95 euros.

http://elpais.com/diario/2012/02/04/babelia/1328317960_850215.html

viernes, 25 de noviembre de 2016

Negativo (experimentos que contradicen lo esperado, sabido o dado como sentido común)

El conocimiento, como la ciencia, requiere cultivar una mente abierta y un espíritu crítico

Esta es una columna de castigo y recompensa. Vamos con lo primero. El sentido común y Aristóteles dictaban que las piedras grandes (más pesadas) cayeran más deprisa que las pequeñas (o más ligeras), pero a Galileo le bastó subirse a la torre de Pisa (hay quien dice que no se subió, que es una leyenda, hizo otros experimentos sobre planos inclinados) para demostrar que no era así (la prueba empírica), en lo que puede considerarse el primer resultado negativo de la historia de la ciencia; en él se basan las teorías gravitatorias de Newton y de Einstein, y por tanto toda nuestra cosmología.

En las postrimerías del siglo XIX, Michelson y Morley diseñaron un pulcro y minucioso experimento para medir la velocidad de la Tierra respecto al éter luminífero, el medio en el que se movía la luz, y lo que les salió fue que allí no había éter luminífero ninguno, en otro glorioso resultado negativo que reveló a Einstein que la velocidad de la luz era una constante fundamental de la naturaleza. Einstein, en realidad, ya sospechaba eso por razones de consistencia matemática, pero nadie le habría hecho caso sin el crucial resultado negativo del éter (la prueba empírica).

El anatomista norteamericano Vernon Mountcastle, que murió el año pasado, descubrió en los años cincuenta la estructura fundamental del córtex cerebral, la sede de la mente humana, y se concentró en buscar las diferencias entre unas zonas y otras que pudieran explicar la asombrosa subdivisión del córtex en módulos (visuales, auditivos, sintácticos, semánticos, emocionales, morales y todo lo demás). Redondeando un poco, no encontró ninguna. Las “columnas corticales” descubiertas por Mountcastle se las apañan de algún modo para realizar todas esas tareas tan distintas. Otro resultado negativo fundamental (otra prueba empírica).

Y, tras el castigo, la recompensa. Si la ciencia se hubiera comunicado desde tiempos de Galileo de la misma forma en que nos informamos ahora los legos, el conocimiento seguiría estancado en el siglo XVI. Al informarnos mediante nuestros amigos de Facebook, nuestros contactos de WhatsApp, nuestros seguidores de Twitter y nuestra red de Google, lo que estamos haciendo es ignorar los resultados negativos y garantizar que las opiniones que nos llegan son solo aquellas con las que sabemos que vamos a estar de acuerdo de antemano, y que solo recibamos las informaciones que confirman nuestros prejuicios miopes. Esto es un error garrafal.

El conocimiento, como la ciencia, requiere cultivar una mente abierta y un espíritu crítico. No se puede pensar con claridad sin aprender a inclinar la cabeza en el ángulo adecuado para entender los argumentos contrarios. Sin resultados negativos no hay progreso.

Javier Sampedro. El País.

http://elpais.com/elpais/2016/11/16/opinion/1479308380_498827.html

jueves, 27 de octubre de 2016

El físico y comunicador científico Richard Feynman propuso otro criterio para distinguir ciencia de seudociencia, al que puede recurrir cualquier profano en ciencia tentado por una terminología sofisticada que le suena a científica...

"No es perfecta. Puede utilizarse mal. Es sólo una herramienta. Pero sin duda es la mejor herramienta que tenemos, se autocorrige, progresa y se puede aplicar a todo. Tiene dos reglas. Primero: no hay verdades sagradas; toda presunción debe ser examinada críticamente; los argumentos de autoridad no tienen valor. Segundo: lo que sea inconsistente con los hechos debe ser desechado o revisado. Debemos comprender el cosmos como es, y no confundir lo que es con lo que quisiéramos que fuera. Lo obvio es a veces falso, lo inesperado es a veces cierto".
Carl Sagan en Cosmos (1980), a propósito de la ciencia. 



Richard Feynman propuso un método sencillo para distinguir entre ciencia y pseudociencia

¿Cómo podemos saber si una afirmación es científica? Se trata de una pregunta de suma importancia, puesto que estamos rodeados de proposiciones que tienen visos de ser creíbles, utilizan el lenguaje de la ciencia y a menudo lo hacen así precisamente para tratar de refutar algún consenso científico. Como hemos visto en el caso de la cruzada anti-vacunas, ser víctima de los argumentos pseudocientíficos puede tener efectos terribles. De modo que es pertinente preguntarse sobre cómo la gente corriente, los padres corrientes y los ciudadanos corrientes pueden evaluar este tipo de argumentos.

El problema de la demarcación, o qué es y qué no es ciencia, ha ocupado a los filósofos durante cierto tiempo, y la respuesta más famosa procede del filósofo de la ciencia Karl Popper, que propuso su teoría de la “falsabilidad” en 1963. Según Popper, una idea es científica si es posible imaginarse un enunciado de la misma que pueda demostrarse falso. Aunque la definición estricta de ciencia de Popper ha tenido cierto uso durante años, también ha sido objeto de críticas, tanto porque una parte de la ciencia aceptada ya fue refutada en su día (la teoría de la gravedad de Newton, la teoría atómica de Bohr), como porque una parte de la ciencia teórica actual no puede falsarse (por ejemplo, la teoría de cuerdas). Sea como fuere, para los legos en la materia el problema sigue sin resolverse. Si una teoría científica escapa a nuestra comprensión es improbable que podamos vislumbrar el modo de refutarla.

El físico y comunicador científico Richard Feynman propuso otro criterio, al que puede recurrir cualquier profano en ciencia tentado por una terminología sofisticada que le suena a científica. Simon Oxenham, en Big Think pone como ejemplo al médico y comunicador Deepak Chopra, alguien que puede calificarse de “infame por abusar del lenguaje científico para hacer parecer como profundas afirmaciones sin sentido” (lo que Daniel Dennett llama “deepities”). A modo de lenitivo para hacer frente a este tipo de proposiciones confusas, Oxenham nos remite a una conferencia que Feynman pronunció en 1966 en un encuentro de la National Science Teachers Association. En vez de sugerir que los no expertos se enfrenten derechamente a afirmaciones formuladas con ropaje científico, Feynman les recomienda traducirlas primero al lenguaje corriente con el fin de asegurarse de que lo que la proposición asevera sea un concepto lógico y no simplemente una colección de términos especializados.

El ejemplo que utiliza Feynman procede de la fuente más rudimentaria, un “manual de ciencia de primer curso” que “empieza a enseñar ciencia de un modo desafortunado”: muestra al alumno la imagen de un “un perro de juguete al que se le da cuerda”, después una imagen de un perro de verdad y después una motocicleta. Para cada caso se le pregunta al estudiante: “¿qué hace que se mueva?”. Feynman cuenta que la repuesta que da “el manual del profesor (…) ‘es la energía la que hace que se muevan’”. Sólo uno pocos estudiantes habrán intuido un concepto tan abstracto como éste, a menos que hayan aprendido la palabra previamente, que de hecho es lo único que la lección les enseña. Feynman nos muestra que la respuesta bien podría haber sido: ‘lo mueve Dios’ o ‘un espíritu provoca su movimiento’ o ‘la movilidad es lo que hace que se mueva’.

Bien al contrario, afirma, una buena lección de ciencia “debe partir de la reflexión acerca de qué habría respondido un ser humano corriente”. El empleo del concepto de energía en el lenguaje corriente permite al estudiante explicarlo, y Feynman sostiene que esto constituye una prueba para determinar “si has enseñado una idea o si has enseñado una definición. Puedes probarlo del siguiente modo”:

Sin utilizar la nueva palabra que acabas de aprender, trata de reformular con tus propias palabras lo que has aprendido. Sin utilizar la palabra “energía”, cuéntame qué sabes acerca del movimiento de un perro.

La insistencia de Feynman en el leguaje corriente recuerda a la afirmación que suele atribuirse a Einstein de que no puedes decir que has entendido algo a menos que seas capaz de contárselo a tu abuela. Este método, sostiene Feynman, impide que acabemos aprendiéndonos “recetas místicas para responder a las preguntas”. Oxenham lo describe como “un procedimiento valioso para poner a prueba si realmente hemos aprendido algo o si sólo creemos que hemos aprendido algo”.

Este procedimiento resulta igualmente útil para poner a prueba las afirmaciones de los demás. Si alguien es incapaz de explicar algo en su lenguaje corriente, entonces debemos preguntarnos si realmente comprende lo que afirma. En palabras de Feynman: “es posible presentarlo en la forma debida y llamarlo ciencia, pero es pseudociencia”.

¿La prueba del lenguaje corriente de Feynman resuelve el problema de la demarcación? No, pero si la utilizamos como guía cuando nos enfrentamos a afirmaciones que están formuladas en una jerga científica, y por eso nos parecen verosímiles, sin duda puede ayudarnos a ser más claros y a advertir cuándo algo carece de sentido. Y si alguien quiere saber cómo los científicos pueden explicar ideas complicadas de un modo llano y accesible, no tiene más que leer o escuchar al propio Feynman.

Josh Jones doctor en filología inglesa, escritor, editor y músico. Cofundador de la revista virtual Guernica y editor y colaborador habitual en Open Culture.

Fuente: Open Culture, abril de 2016 Traducción: Jordi Mundó

http://www.sinpermiso.info/textos/richard-feynman-propuso-un-metodo-sencillo-para-distinguir-entre-ciencia-y-pseudociencia