Mostrando entradas con la etiqueta física. Mostrar todas las entradas
Mostrando entradas con la etiqueta física. Mostrar todas las entradas

miércoles, 1 de agosto de 2018

Olimpiada Internacional de Física

Veo las noticias y entre pachangas de pretemporada y la eterna sorpresa del calor en verano, no hay mención para el mayor logro español del pasado fin de semana. El sábado, en Lisboa, Alejandro Epelde Blanco se alzaba con una medalla de oro en la Olimpiada Internacional de Física. Esta competición reúne anualmente a los mejores estudiantes preuniversitarios de 90 países para enfrentarlos a dos duros exámenes (práctico y teórico) en los que resuelven problemas de muy alto nivel. Entre estos 450 alumnos, Alejandro ha conseguido la primera medalla de oro en la historia de la delegación española —que ha vuelto con otras dos medallas de bronce y una mención de honor— después de 40 años participando. Si hubiera conseguido ese resultado con pasaporte estadounidense, o chino, las puertas de las mejores Universidades de su país se abrirían gratuitamente para recibirle; y las instituciones educativas a las que ha representado se harían eco de su éxito. Alejandro es español y nuestras preocupaciones y las de nuestras instituciones no son ni la ciencia ni la educación. Es hora de replantearnos lo que de verdad nos importa como sociedad, pues esto condicionará nuestro futuro.— Jaime Redondo Yuste. Leganés (Madrid).

domingo, 8 de julio de 2018

Caida Libre

Nicole Oresme, en el siglo XIV, descubrió la forma en que caen las cosas por el influjo de la gravedad. Todo genio crea sus precedentes, dijo Borges en alguna parte, y Galileo le dio la razón creando a Nicole Oresme, el erudito francés del siglo XIV que descubrió la forma en que caen las cosas por el influjo de la gravedad. No caen a velocidad constante, como un coche que avanza tranquilo por la carretera, sino con una velocidad que aumenta de forma constante, como un coche en el carril de aceleración para entrar en la autovía. Su velocidad crece en proporción al tiempo, y la distancia que recorre crece con el cuadrado del tiempo. Pero Oresme solo es conocido porque, dos siglos después, Galileo no solo redescubrió esa simple ley matemática, sino que demostró que así es exactamente como caen las cosas. Todas las cosas: una piedra de un kilo y otra de una tonelada. También caería así una pluma de no ser por la resistencia del aire, como demostró en la Luna el astronauta David Scott, del Apolo 15, cuatro siglos después.

La cosmología moderna proviene de una idea repentina que asaltó a Einstein en 1906, mientras aún trabajaba en la oficina de patentes de Berna: una persona en caída libre no sentirá su propio peso. 
 “La idea más feliz de mi vida”, la llamó Einstein. Tiene gracia que, tras 100.000 años de existencia de nuestra especie, hubiera que esperar a Einstein para que nos diéramos cuenta de eso. Seguramente, la gran mayoría de la gente que había experimentado la caída libre no pudo vivir para contarlo. Pero hoy cualquier visitante de un parque de atracciones puede descubrir la idea más feliz de Einstein. Los astronautas, de hecho, se entrenan para la ingravidez del espacio en un avión que sube muy alto, apaga los motores y se precipita en caída libre hacia la Tierra. Stephen Hawking no quiso morir sin vivir esa experiencia.

La teoría gravitatoria de Einstein, la relatividad general, se fundamenta por entero en la percepción repentina que le iluminó en la oficina de patentes de Berna: que una persona en caída libre no sentirá su propio peso, y que estar acelerando en un coche o en un ascensor es indistinguible de estar quieto y sometido a un campo gravitatorio, como el de la Tierra. Es una teoría de espíritu galileano, porque Galileo usó un argumento similar para mostrar que los humanos no tenemos por qué sentir que nuestro planeta está girando a toda pastilla alrededor del Sol. En la época, ésa era la principal crítica a la teoría copernicana.

Anne Archibald y sus colegas del instituto holandés de radioastronomía demuestran hoy en Nature que las percepciones de Galileo y Einstein son exactas con un montón de decimales de aval. La moraleja queda para el lector.

Fuente: El País, Javier Sampedro

Más: https://www.fisicalab.com/apartado/caida-libre#contenidos

http://www.areaciencias.com/Caida-libre.htm

lunes, 25 de junio de 2018

La batalla interior de los físicos del nazismo ¿Cómo estudiar la relatividad despreciando a Einstein? Philip Ball indaga en la compleja relación entre ciencia y política bajo el Tercer Reich.

La batalla interior de los físicos del nazismo
La física fue la gran ciencia de la primera mitad del siglo pasado, la especialidad capaz de los mayores honores y los peores horrores. También fue el campo de acción de los mayores héroes y villanos, del desarrollo de usos de las radiaciones para curar y para matar. ¿Dónde estaba cada uno? ¿Cómo sobrevivieron al nazismo los que se quedaron en Alemania? ¿Cómo hablaban de relatividad sin Einstein? ¿Era posible asomarse al nuevo mundo despreciando la ciencia judía,teniendo en cuenta que una cuarta parte de los físicos alemanes eran, en 1933, oficialmente “no arios”?

Philip Ball indaga en este libro sobre la batalla en el alma de los físicos alemanes bajo el Tercer Reich, al menos según el título original. Y lo hace con profundidad pero sin sesgos, sin apriorismo y con un análisis riguroso y equilibrado. Dejando claro, también, que no hay ciencia sin política. Es el retrato de un momento científico apasionante —es poco probable que veamos nunca nada igual, el descubrimiento, literalmente, de un universo desconocido— y de un momento político excepcional.

Y no es fácil, desde luego, mantener el equilibrio cuando se conoce, por ejemplo, el trato que recibió Lise Meitner, judía, mujer, ninguneada por su jefe —ni siquiera la mencionó cuando recogió el Nobel que ella merecía— y que pudo escapar de Alemania gracias a Peter Debye, uno de los personajes clave para el autor. Precisamente Ball, divulgador científico y editor durante veinte años de la revista  Nature, rescata del lugar de los apestados en el que han colocado algunos biógrafos a Debye y, de hecho, este es en cierta medida el hilo conductor, pese a haber sido considerado “un premio Nobel con las manos sucias”.

La batalla interior de los físicos del nazismo Peter Debye, que trabajó “en una de las áreas menos glamurosas de la ciencia: la fisicoquímica”, fue acusado (en enero de 2006) de connivencia con los nazis, pese a que nunca quiso adoptar la nacionalidad alemana, lo que hubiera supuesto perder la holandesa, y que fue, de hecho, quien hizo posible la huida de Meitner. Pero se movió en una zona gris en algunas ocasiones, entre el fervor por el conocimiento y el acatamiento de normas claramente racistas. Precisamente en esa zona gris es donde Ball trata de explicar, y de entender, los comportamientos de los protagonistas de esta historia, el gran Planck, Heisenberg y todas las lumbreras del momento.

En el proceso de nazificación de Alemania distingue Ball a los convencidos y a quienes viven lo que pasa viendo un país deshecho que comienza a levantarse y ven con buenos ojos que se restaure “el honor nacional. Eso no significa que Heisenberg recibiera con beneplácito el ascenso de Hitler, pero, como a muchos alemanes de familias de clase media alta, lo predispuso favorablemente hacia algunos aspectos de las políticas nacionalsocialistas, entre ellos su truculencia militarista”.

Se trata, en fin, de entender cómo los físicos alemanes se comportaron, en palabras de Planck, “como un árbol frente al viento”. O, dicho de otra manera, cómo unas personas tan inteligentes se acomodaron a una situación en la que “lo que antes había sido impensable se volvió de repente factible”.

Al servicio del Reich. La física en tiempos de Hitler. Philip Ball. Traducción de José Adrián Vitier. Turner. Madrid, 2014. 354 páginas. 24 euros.

https://ep00.epimg.net/descargables/2015/02/10/c0dd1114dbcb147926675e72705ee8be.pdf?rel=mas

https://elpais.com/cultura/2015/02/10/babelia/1423567411_709762.html

viernes, 6 de octubre de 2017

Einstein (una vez más) tenía razón: la detección de la cuarta onda gravitacional que confirma uno de los postulados fundamentales de la Teoría de la Relatividad

Fue por mucho tiempo uno de los mayores misterios de la ciencia.

Albert Einstein estaba seguro de que existían: de hecho, las ondas gravitacionales, como las llamó, fueron una de las bases de su Teoría General de la Relatividad, uno de los postulados más innovadores y revolucionarios de la física teórica en el siglo XX.

Y este miércoles, el Observatorio Europeo de la Gravedad (EGO) en Cascina, Italia, anunció la detección, por cuarta vez, de estas ondas, generadas por la fusión de dos agujeros negros gigantes que tenían una masa alrededor de 53 veces la del Sol.
Albert Einstein
Las ondas llegaron a la Tierra en agosto pasado y se generaron a unos 1.800 millones de años luz de distancia.

La onda fue registrada casi al mismo tiempo por tres instrumentos denominados interferómetros, en el detector Virgo, un equipo subterráneo en forma de L que fue reparado recientemente.

Es la primera onda que se detecta fuera de territorio de Estados Unidos y por tres instrumentos casi al mismo tiempo.
"Si bien este nuevo evento es de relevancia astrofísica, su detección viene con un activo adicional: esta es la primera onda gravitacional significativa registrada por el detector Virgo", asegura un comunicado de los científicos de dicho laboratorio.

Otras ondas
No es la primera vez que "el sonido del universo" llega hasta la Tierra.

Por qué Einstein tuvo que esperar a que un eclipse confirmara su teoría de la relatividad

En 2015, casi un siglo después de las predicciones de Einstein, los científicos las detectaron por primera vez: un raro "sonido" proveniente del espacio era el resultado de la colisión de dos inmensos agujeros negros a unos 3.000 millones de años luz de la Tierra.

Luego, en 2016, el Observatorio Gravitacional de Interferometría Láser LIGO, en Hanford, Estados Unidos, lo detectó nuevamente, por tercera vez.

Sheila Rowan de la Universidad de Glasgow, Reino Unido, aseguró a la BBC que, tras este hallazgo, los científicos están en el umbral de una nueva comprensión de los agujeros negros.

"Es tentador ver esta nueva historia de cómo los agujeros negros se formaron y evolucionaron a través de la historia del cosmos. Esta información está casi a nuestro alcance, pero todavía no hemos llegado a ella", aseguró.

Los agujeros negros se forman al final de la vida de las supernovas, una estrellas de gran masa que implosionan, es decir, estallan hacia adentro y generan un campo magnético tan fuerte que puede incluso absorber la luz.

Qué son las ondas gravitacionales
Según Einstein, todos los cuerpos en movimiento en el espacio se "hunden" por su peso en la malla del espacio-tiempo y generan ondas, como cuando una piedra cae en un río.

Su detección se considera uno de los avances en física más importantes de las últimas décadas.

Percibir las distorsiones en el espacio-tiempo representa un cambio fundamental en el estudio del Universo, ya que permite observar antiguos eventos invisibles a los radiotelescopios o a los telescopios ópticos.

Mientras que la luz se dispersa al atravesar distintos medios -como por ejemplo, cuando llueve y se forma el arcoíris-, esto no ocurre con las ondas gravitacionales cuando se desplazan por el espacio desde su lugar de origen hacia la Tierra.

Esto permite a los científicos tener una certeza más profunda sobre lo que ocurrió en estrellas ubicadas a millones de años luz de nuestro planeta.

Fuente: http://www.bbc.com/mundo/noticias-41422417

lunes, 11 de septiembre de 2017

Del jazz al universo y más allá. Un libro de Stephon Alexander, físico y saxo tenor, revela la relación profunda de la música con el cosmos, y el inmenso poder creativo de la metáfora

Para un enamorado de la física un libro titulado El jazz de la física ejerce la atracción gravitatoria de un agujero negro y hace volar la mente por los confines del cosmos. Los que solo aman una de esas dos materias, o ninguna, pueden leer esta obra y dejarse arrastrar por el influjo de las relaciones ocultas entre disciplinas dispares, por el inmenso poder creativo de la metáfora.

Imagina dos peces que hablan entre sí en un río, cerca del precipicio de una cascada. Sus mensajes viajan a la velocidad del sonido en el agua, lo que no está mal para el espeso discurso que podemos esperar de esa especie acuática. El pez más afortunado se queda varado entre las raíces de un nenúfar, mientras el otro deriva de manera fatal hacia la cascada. Pese a ello pueden seguir hablando sin problemas; la voz del pez varado viaja ayudada por la corriente, y la del pez condenado viaja contra corriente y tarda más en llegar a su interlocutor, pero la charla sigue.

De pronto, en el mismo momento en que el segundo pez cruza el borde del precipicio, la situación cambia radicalmente. El pez que cae por la cascada sigue recibiendo el sonido del otro, pero sus gritos de auxilio ya no llegan a su interlocutor. La velocidad con que el agua cae por la cascada es mayor que la del sonido, y el pobre pez ha desaparecido de su mundo a todos los efectos.

Cambiando el sonido por la luz, esta pequeña historia es la metáfora perfecta de un agujero negro, el objeto más exótico y enigmático que ha descubierto la ciencia. El borde de la cascada representa el “horizonte de sucesos” del agujero negro, la frontera a partir de la que cualquier cosa, pez o astronauta, materia o energía, cae con tal velocidad hacia la atracción gravitatoria fatal del agujero negro que no puede escapar de él. Ni siquiera la luz puede escapar, de ahí que se llame negro.

Es solo una de las mil metáforas que plantea  Stephon Alexander, físico y saxo tenor, en su libro El jazz de la física, recién publicado en la colección Metatemas de Tusquets. El ejemplo de los peces no tiene relación con el jazz —solo la tiene con el sonido—, pero hay un motivo sólido para mencionarla: que la razón última del libro es mostrar el poder de la analogía y la metáfora para el pensamiento, también el pensamiento científico. Y porque explica con transparencia el horizonte de sucesos de un agujero negro, uno de los conceptos más radicales y complejos de la ciencia.

Pero El jazz de la física no es solo un título con gancho. El libro responde a las expectativas. Alexander es un buen físico teórico, formado con los mejores científicos y profesor en la Universidad de Brown, y también un solvente saxofonista de jazz. Su pasión, y sus estudios de media vida, se reparten a partes iguales entre  John Coltrane y Albert Einstein.
Y, cuando una mente creativa se sumerge a fondo en dos campos distintos, no es infrecuente que emerja una metáfora, un nexo recóndito y penetrante entre dos conocimientos previamente percibidos como incompatibles. Así trabajaban Coltrane, Einstein y los demás genios de la historia. Ese es el truco para innovar, para descubrir, para crear pensamiento. Cocerse en el dominio de una sola disciplina es la trampa para creadores por antonomasia, el pasaporte hacia la esterilidad.

En ese sentido, la vida de Stephon Alexander, que es la fuente de su pensamiento abarcador, tiene mucho interés, y no es sorprendente que su libro tenga una fuerte componente autobiográfica (como tal vez la tenga toda novela). Stephon, afroamericano hijo de emigrantes de Trinidad, creció en el Bronx neoyorquino, donde un chaval negro tenía mucho más fácil dedicarse a vender coca que estudiar física. Mientras se sumergía en los arcanos del saxo y del lenguaje musical del jazz, sin embargo, el adolescente encontró tiempo para leer a Stephen Hawking (Historia del tiempo) y a Richard Feynman (¿Está usted de broma, mister Feyman?), y esos libros abrieron un nuevo continente a su mente inquieta.

“Leer todo lo que caía en mis manos sobre física”, confiesa, “me proporcionaba una evasión perfecta mientras crecía en una parte del Bronx donde la realidad, para muchos, era deprimente; buena parte de mis años de estudiante los pasé sintiéndome un negado fuera de lugar, un rastafari de Trinidad criado en el Bronx”. Es bien curioso que, en el centro puntual de ese ambiente marginal, el joven Stephon dedicara buena parte del tiempo que no tenía a plantearse la madre de todas las preguntas: ¿por qué hay algo en vez de nada?

Una pregunta que, como cada vez más cosas, era parte de la filosofía y ahora ha emigrado a la física, la madre de todas las ciencias.

LA LEY DE HAWKING
El físico Stephen Hawking, una de las inspiraciones de Stephon Alexander, formuló hace años lo que algunos han denominado ley de Hawking sobre la divulgación científica: cada ecuación que pones en un libro reduce las ventas a la mitad. No pretendía ser más que un sarcasmo, pero tiene un átomo de verdad. La mala educación matemática en los colegios de todo el mundo ha causado que la mera visión de una fórmula induzca rechazo, temblores y sudores fríos en la población lectora. Y eso es un verdadero problema, porque la física no se puede entender a fondo sin las matemáticas que la fundamentan y la hacen avanzar. Las ecuaciones, como dice Alexander, son el sexto sentido del físico, un sentido que le permite ver conceptos que ni hubiera imaginado sin ellas.

A Alexander, sin embargo, no le dan miedo las ecuaciones. No cree en la ley de Hawking. Su enfoque, más bien, es sumergir al lector en ellas, y explicárselas paso a paso, desde los fundamentos que todos entendemos. Las matemáticas no pueden ser incomprensibles: son la base del entendimiento de la naturaleza. Los malos profesores son otra cuestión.

https://elpais.com/cultura/2017/03/10/actualidad/1489161469_986954.html

¿Qué le hace la música a nuestro cerebro?

miércoles, 30 de agosto de 2017

_- El ascensor de Einstein. Los experimentos mentales han desempeñado un papel importante en el desarrollo de la ciencia. Pero, ¿cuáles son sus límites?

_- La relación entre el cine y los sueños, planteada la semana pasada, ha dado lugar a interesantes comentarios, en los que, como era de esperar, se repiten los nombres de algunos grandes realizadores, entre los que destacan Alfred Hitchcock y Akira Kurosawa (cabría añadir a Federico Fellini), que no solo mostraron en la pantalla los sueños de algunos de sus personajes más enigmáticos, sino que hicieron un cine marcadamente onírico. Sin olvidar algunos clásicos -como Mujeres soñadas, de René Clair, o La vida secreta de Walter Mitty, de Norman McLeod- articulados alrededor de los sueños y ensoñaciones diurnas de los protagonistas.

Queda pendiente (y es de suponer que lo estará durante mucho tiempo) la doble cuestión de los límites de la imaginación y de si los sueños son reducibles a productos audiovisuales. Desde muy antiguo (probablemente desde los albores de la humanidad), los sueños se han considerado material interpretable y se han formulado diferentes teorías sobre su significado (la más famosa e influyente es la que Sigmund Freud propone en La interpretación de los sueños), pero su estudio científico entraña grandes dificultades.

Los experimentos mentales
El estudio de los sueños no es el único campo en el que la imaginación va por delante de la experimentación. Incluso se podría decir que continuamente, sin casi darnos cuenta, en nuestra vida cotidiana efectuamos “experimentos mentales” para intentar anticipar el resultado de determinadas conductas o decisiones, y en la mayoría de las ciencias desempeñan un papel fundamental (por no hablar de las matemáticas, donde todos los experimentos son mentales).

En estas mismas páginas hemos hablado del diablillo de Maxwell, la habitación china de Searle, el gato de Schrödinger y otros famosos experimentos mentales; pero sin duda el máximo exponente de esta sutil técnica es Albert Einstein, que, dando un nuevo e inusitado impulso al concepto de Gedankenexperiment de su maestro Ernst Mach, se dedicó a perseguir un rayo de luz con su imaginación hasta alcanzar la teoría de la relatividad especial, y luego se encerró en un ascensor en caída libre o en acelerada ascensión hasta dar con la teoría de la relatividad general. (Por cierto, ¿de dónde procede la ilustración que encabeza este artículo y qué tiene que ver con todo esto?).

En la actualidad, la física ha llegado a un punto en el que algunos experimentos y comprobaciones requieren la construcción de gigantescos telescopios, enormes aceleradores de partículas o costosísimas sondas espaciales, y otros (como los relacionados con los agujeros negros) son sencillamente inviables, por lo que los experimentos mentales están a la orden del día. El problema es que, al igual que algunas teorías, como la de cuerdas en sus distintas versiones, algunos de estos Gedankenexperiment están tan lejos de nuestras posibilidades de comprobación que, por el momento (y puede que por mucho tiempo), son entelequias equiparables a las de la ciencia ficción (de hecho, algunos científicos recurren a los relatos futuristas para exponer sus teorías).

Propongo a mis sagaces lectoras y lectores que planteen sus propios experimentos mentales, o que comenten algunos de los que aún no hemos abordado, como el de la Tierra Gemela de Putnam, el del violinista de Thompson, el de las personas que se dividen como amebas de Parfit…

Carlo Frabetti es escritor y matemático, miembro de la Academia de Ciencias de Nueva York. Ha publicado más de 50 obras de divulgación científica para adultos, niños y jóvenes, entre ellos Maldita física, Malditas matemáticas o El gran juego. Fue guionista de La bola de cristal.

https://elpais.com/elpais/2016/10/13/ciencia/1476349426_540772.html

lunes, 5 de diciembre de 2016

WERNER HOFMANN / FÍSICO. “Queremos estudiar los límites de las teorías de Einstein”

El director del Instituto Max Planck de Física Nuclear en Heidelberg habla sobre las posibilidades que ofrecen los rayos gamma para conocer el universo

En el año 1800, el astrónomo alemán William Herschel descubrió que había más luz que la que ven nuestros ojos.
Midiendo las distintas temperaturas de los colores que tomaba la radiación del Sol al pasar a través de un prisma, colocó un termómetro justo en el extremo del arcoiris, un poco más allá de la luz roja. El objetivo era medir la temperatura ambiente de la habitación, pero el resultado del experimento fue inesperado. La temperatura medida por ese termómetro era superior a la de la luz visible y el científico concluyó que debía haber algún tipo de luz invisible que hacía subir el mercurio. Había descubierto la radiación infrarroja.

Aquel hallazgo abrió, entre otras cosas, una nueva ventana a la observación del universo. Los telescopios que capturan la luz infrarroja han permitido observar procesos cósmicos invisibles con la luz normal.  Herschel, por ejemplo, un telescopio de la Agencia Espacial Europea lanzado en 2009, ha permitido observar la formación de galaxias y estrellas con un detalle imposible para los telescopios ópticos.

Con los años, se descubrieron otros tipos de radiación que han ampliado nuestra capacidad de observación del cosmos. Es el caso de los rayos gamma, cien trillones de veces más energéticos que los fotones visibles, un tipo de luz que se encuentra más allá del límite violeta del arcoiris. Este rango es el que va a servir a físicos como Werner Hofmann (Baden-Baden, Alemania, 1952) para explorar algunos fenómenos superenergéticos y, quizá, revolucionar la física.

Hofmann, director del Instituto Max Planck de Física Nuclear en Heidelberg (Alemania), participó el martes en el ciclo de astrofísica y cosmología de la Fundación BBVA, en Madrid, para hablar de la Red de Telescopios Cherenkov (CTA, por sus siglas inglés), dos observatorios gemelos que explorarán hasta su límite las posibilidades de los rayos gamma. Uno de esos observatorios estará en la isla canaria de La Palma.

Pregunta. ¿Qué podemos aprender observando el universo a través de los rayos gamma?

Respuesta. La forma en que se producen los rayos gamma es muy diferente de la de la luz normal. La luz normal surge de cuerpos calientes que irradian porque están calientes y no hay nada lo bastante caliente en el universo para irradiar rayos gamma. Lo que creemos es que se producen cuando hay partículas muy energéticas en el universo que se aceleran de alguna manera interactúan con la materia y producen rayos gamma. Los rayos gamma nos hablan de estas partículas de muy alta energía en el universo y nos cuentan dónde han sido creadas, cómo se propagan o cómo interactúan con su entorno.

Hasta hace algo más de una década, se pensaba que procedían de algún rincón exótico del cosmos que no tenía un gran impacto, pero ahora, la actual generación de instrumentos nos ha mostrado que hay un gran número de aceleradores de partículas cósmicas en el universo. Estos aceleradores crean partículas muy energéticas y estas partículas también influyen en la forma de evolucionar de nuestro universo. Porque hay mucha energía en estas partículas y la galaxia tendría un aspecto diferente y habría evolucionado de otra manera sin estas partículas.

P. ¿Qué tipo de objetos producen este tipo de radiación?
R. La fuente clásica predicha para los rayos gamma eran las supernovasHemos visto cómo estos objetos aceleran las partículas, lo que no sabemos es si solo con ellas se puede justificar la cantidad de partículas de alta energía que hay en el universo o si hay otros objetos.

P. ¿Cuáles son los principales objetivos para los nuevos observatorios de rayos gamma que se van a empezar a construir?
R. Tenemos tres grandes objetivos científicos para la CTA. 
Uno es entender cómo se crean las partículas de alta energía, especialmente en nuestra galaxia. Intentar comprender la formación y la propagación de rayos cósmicos.

El otro gran objetivo es intentar entender lo que sucede cerca de los agujeros negros. Sabemos que los agujeros negros producen unos chorros de eyecciones altamente relativistas, pero no sabemos cómo se generan estos chorros o cómo se aceleran las partículas en el chorro. También estamos intentando entender cómo se convierte en radiación el material que cae en los agujeros negros.

El tercer gran objetivo es buscar nueva física. Uno de los fenómenos fundamentales que queremos estudiar es la aniquilación de materia oscura. En el centro de la galaxia hay partículas de materia oscura que son nuevas partículas elementales. En algunos modelos se predice que cuando colisionan se aniquilan y crean rayos gamma que producen una señal distinguible. Si esas partículas existen, la CTA debería ser capaz de detectarlas.

También queremos estudiar los límites de las teorías de Einstein en energías muy elevadas.
Hay teorías que predicen que en escalas de distancia muy cortas el espacio tiempo tiene una estructura espumosa. Los rayos gamma tienen longitudes de onda muy cortas, así que sienten ya un poquito esta estructura espumosa. En algunos modelos los rayos gamma de alta energía se propagan más rápido o más lento que la luz normal, lo que significa que la velocidad de la luz no es constante dependiendo de la energía, algo que violaría la ley de Einstein. Eso sería un indicio de que hay algo como esta espuma del espacio tiempo de gravedad cuántica. Tanto la gravedad cuántica como la materia oscura serían ambos grandes descubrimientos que revolucionarían nuestra forma de pensar sobre el universo.

P. ¿Pueden existir fuentes de rayos gamma que envíen señales de objetos cósmicos que aún no conocemos?
R. Entre las fuentes de rayos gamma que conocemos, hay algunas donde no vemos cuál es el objeto que los produce. Es una zona oscura del universo y de allí vienen rayos gamma. Puede ser que tengamos que mirar con nuevos instrumentos o que se trate de un mecanismo totalmente nuevo.

P. ¿De qué nuevos objetos podríamos estar hablando?
R. Una posibilidad serían conglomerados de materia oscura. La materia oscura es muy densa en el centro de la galaxia, pero también hay conglomerados en otras zonas y podría ser que fuesen el origen de algunos de esos rayos gamma porque solo lo ves en forma de aniquilación de rayos gamma. De todos modos, es mucho más probable que sea de un tipo de fuente que conocemos, como una estrella de neutrones que acelera las partículas y aún no hayamos encontrado esa estrella de neutrones.

http://elpais.com/elpais/2016/11/23/ciencia/1479900732_768230.html?rel=lom
vídeo sobre la vida de Einstein.
https://youtu.be/pItb8zKxnW0

viernes, 30 de septiembre de 2016

¿Hay una quinta fuerza de la naturaleza? Una señal de un experimento de física húngaro apunta a la posibilidad de que exista una fuerza de la naturaleza más allá de las cuatro que se conocen hasta ahora

Todos, aunque no tengamos ni idea de física, hemos experimentado los efectos de las cuatro fuerzas fundamentales de la naturaleza. La gravedad nos pega al suelo, la interacción nuclear fuerte se rompe a base de bombardeos con neutrones para producir energía en las centrales atómicas, la radiación electromagnética que generan el Sol o las bombillas nos ilumina y la interacción nuclear débil, quizá la más esotérica, produce nuevos elementos y permite, por ejemplo, la datación por carbono 14.

Con estos antecedentes, cuando desde principios de este año comenzó a hablarse del posible descubrimiento de una quinta fuerza, muchos trataron de imaginar un fenómeno parecido que se nos hubiese podido escapar. Sin embargo, aún queda mucho para poder confirmar el hallazgo y los efectos de esa quinta fuerza no serían tan evidentes como los de las cuatro anteriores.

Si al final tiene éxito y no queda aplastada por nuevos datos que la refuten, la historia de esta revolución comenzará a contarse en Hungría. Allí, en el Instituto para la Investigación Nuclear de la Academia Húngara de ciencias en Debrecen, Attila Krasznahorkay y su equipo observaron un fenómeno extraño en un experimento diseñado para buscar “fotones oscuros”, un tipo de partículas que ayudarían a entender qué es la materia oscura. En su búsqueda, disparaban protones a unas dianas de litio, generando núcleos de berilio 8, un elemento inestable que, por efecto de la fuerza nuclear débil, se desintegraba produciendo electrones y positrones.

Buscando entre las partículas producidas en esos choques, encontraron una anomalía que solo eran capaces de explicar si existiese una partícula aún desconocida. Se trataría de un bosón ligero, solo 34 veces más pesado que un electrón, algo que permitiría su detección sin una máquina descomunal como el LHC, necesaria para generar bosones pesados como el higgs. Eso haría asequible para muchos grupos del mundo el estudio de ese rango energético en busca de la nueva partícula, pero también plantea la cuestión de por qué no se ha encontrado antes.

El trabajo húngaro ganó relevancia internacional cuando un grupo de físicos teóricos de la Universidad de California en Irvine liderado por Jonathan Feng tomó sus datos y trató de explicar su significado en un reciente artículo publicado en la revista Physical Review Letters. Según ellos, no se trataría de un fotón oscuro, sino de un bosón. El motivo por el que no se habría encontrado hasta ahora, pese a que hay aceleradores capaces de generar partículas de esa masa desde los años cincuenta, es que no interactuaría con protones, y solo se relacionaría con electrones y fotones de una forma débil. Ahora que otros grupos saben dónde buscar, podrán dedicar sus experimentos a la búsqueda de nuevos datos que confirmen o descarten la existencia del bosón X.

“Con los experimentos que hay en marcha y los que están a punto de arrancar, se podrá comprobar en uno o dos años si esa partícula existe”, señala Eduard Massó, catedrático de Física Teórica en la Universidad Autónoma de Barcelona. No obstante, Massó recuerda que la experiencia muestra que a veces hay señales de física exótica que al final son efectos de los propios experimentos que no se han interpretado bien. Sobre la posibilidad real de que la señal observada por el equipo húngaro se confirme como el indicio de esa nueva fuerza de la naturaleza, otro físico responde con humor: “Hay rumores sobre la existencia de un templo oculto en las profundidades del Himalaya, dedicado únicamente a servir de mausoleo a las quintas fuerzas difuntas”.

El escepticismo sobre los resultados del grupo húngaro se alimenta además por dos anuncios previos que acabaron en nada. Según contaba a la revista Quanta el investigador de la Universidad del Estado de Míchigan (EE. UU.) Oscar Naviliat Cuncic, en 2008 afirmaron haber descubierto un bosón de 12 megaelectronvoltios y en 2012 otro de 13,5. Ambos hallazgos desaparecieron cuando se obtuvieron nuevos datos con mejores detectores.

Lo que pasaría si se encuentra
A la espera de que la comunidad científica averigüe si el bosón X es o no una realidad, Massó adelanta qué significaría esa quinta fuerza que, en principio, no tendría una influencia tan evidente en nuestra vida como las cuatro que conocemos hasta ahora. “En el nivel más entusiasta, encontrar esta partícula que se acopla de una forma tan precisa y tan especial a las otras partículas, supondría una revolución. Sería la punta del iceberg de una nueva física, porque existe la posibilidad de que la materia oscura tenga interacciones más allá de las gravitacionales, que no nos dan mucha información sobre esas partículas”, indica. “Muchos experimentos para buscar la materia oscura no han dado los resultados esperados y es posible que sea algo muy diferente de lo que se había supuesto. Es posible que sean partículas de lo que a veces se llama un mundo shadow [de sombra] que contactaría con el nuestro a través de unas interacciones mediadas por esa quinta fuerza, que sería como un puente entre nuestro mundo y el de la materia oscura”, plantea.

En un segundo escenario, es posible que “esta quinta fuerza no tenga consecuencias para nuestra vida”, apunta Massó. Sin embargo, podría servir para acercarse a una teoría que unifique las cuatro grandes fuerzas, algo a lo que Einstein dedicó los últimos años de su vida. Aunque en los años sesenta se vio que a altas energías las fuerzas electromagnética y nuclear débil se podrían explicar como una sola, los esfuerzos para hacer lo mismo con el resto no han tenido éxito. Quizá este nuevo bosón podría servir para lograr lo que no consiguió el descubridor de la Relatividad.

http://elpais.com/elpais/2016/08/31/ciencia/1472658226_451236.html?rel=lom

viernes, 22 de julio de 2016

MIRAR LAS ESTRELLAS

Los astrofísicos son los exploradores modernos y se internan en los secretos esenciales. La ‘terra incognita’ de nuestros días está ahí fuera.

SIEMPRE HE sentido una especial fascinación por la astronomía, probablemente porque a los seis años viví un suceso maravilloso. Me recuerdo de noche y en la calle, una situación ya en sí poco usual para mi corta edad. Yo colgaba de la mano de mi madre y a mi lado se encontraban mi padre y mi hermano. Los cuatro estábamos parados en mitad de la acera y contemplábamos el cielo sin pestañear, al igual que otras decenas de personas que ocupaban la avenida, todas quietas, todas en silencio, todas mirando hacia el firmamento. Hasta que al fin apareció allá arriba una estrellita luminosa que recorría a buen ritmo el arco de la noche. Era el Sputnik de los rusos, el primer satélite artificial colocado en órbita, el primer objeto lanzado por los humanos más allá de la atmósfera. Nuestra primera salida de la Tierra.

La mágica visión de aquella estrella que habíamos sido capaces de poner en el cielo me hizo decidir aquella noche que de mayor sería astronauta. Evidentemente no lo he sido, pero aquel suceso fundacional debió de ser la base de mi amor por la ciencia-ficción y quizá por la ciencia. Aunque he estudiado letras, la ciencia me encanta y siempre he lamentado el tremendo acientifismo de la sociedad española. Por eso considero un precioso regalo el proyecto del Instituto de Astrofísica de Canarias (IAC) en el que he tenido el privilegio de participar.

Pero empezaré por el principio. Los tres mejores lugares del mundo para observar las estrellas están en Chile, para el hemisferio sur, y en Hawái y Canarias para el norte. Y por una vez en nuestra historia, y en buena medida gracias al empeño visionario del astrofísico Francisco Sánchez en los años sesenta, España supo aprovechar estas circunstancias geográficas para crear y desarrollar el IAC, que es uno de los diez mejores centros de astrofísica del mundo. Posee dos observatorios, uno en el Teide y otro en el Roque de los Muchachos, en la isla de La Palma, ambos a unos 2.400 metros de altitud. En cada uno hay dos decenas de telescopios cuya propiedad se reparte entre 20 países. Nosotros tenemos ahí el Gran Telescopio óptico e infrarrojo Canarias, el mayor del mundo, un bicharraco resplandeciente y monumental. Somos una potencia en astrofísica, pero como vivimos de espaldas a la ciencia no lo sabemos.

Para intentar paliar esta ignorancia, al IAC se le ha ocurrido la preciosa idea de invitar a una serie de escritores a visitar sus instalaciones y pedirnos que después escribamos un cuento para un libro. Durante cuatro días me he paseado por esos territorios espectrales de belleza salvaje. El Teide y el Roque tienen una geografía primordial y volcánica que te remite al principio del mundo y que se une a la tecnología más rompedora del planeta, a la ciencia del futuro. Sé que la noche que pasé en el Roque será inolvidable: al atardecer, los observatorios, que eran solitarios búnkeres blancos cerrados a cal y canto, empezaron a abrir sus bóvedas con bostezo de gigantes, y por las aberturas asomaron los telescopios como bichos colosales que salían de sus crisálidas, como grandes lenguas de insectos dispuestos a lamer los lejanos secretos del universo. Y todo en la más completa oscuridad, porque cualquier fuente artificial de luz empeora la calidad de lo observado, y en un silencio apenas rasgado por el chirrido de las cúpulas al girar, de las lentes al rotar para apuntar a las estrellas. Era mágico, era extraño, era sobrecogedor. Era la indecible menudencia del ser humano enfrentándose a la enormidad del universo.

Los astrofísicos son los exploradores modernos y se internan en los secretos esenciales. La terra incognita de nuestros días está ahí fuera, en lo muy grande y lo muy pequeño, desde las galaxias con miles de millones de soles a los quarks infinitesimales. En el IAC se estudia el principio de lo que somos, el corazón mismo de la vida; y, de paso, se desarrolla nuestra capacidad tecnológica y científica, se crean empresas competitivas, se coloca a España en el siglo XXI. Deberían obligarnos a todos los ciudadanos a visitar los observatorios al menos una vez al año. Para que aprendamos a mirar a Andrómeda en vez de estar absortos en nuestro ombligo.

 http://elpaissemanal.elpais.com/columna/mirar-las-estrellas/

viernes, 24 de junio de 2016

Un gato vivo y muerto en dos sitios al mismo tiempo. Investigadores de EE UU logran entrelazar grupos de cuatro fotones y mantenerlos estables, un paso necesario para la creación de ordenadores cuánticos.

Erwin Schrödinger recibió un Nobel por sus aportaciones a la física, tiene un cráter a su nombre en la cara oculta de la Luna y realizó aportaciones filosóficas fundamentales para la genética. Sin embargo, su nombre es mundialmente conocido por un experimento mental que planteó en 1935 en el que un gato podía estar muerto y vivo al mismo tiempo. En aquel caso creado para ilustrar la extrañeza de la mecánica cuántica, que el físico austriaco calificaba de ridículo, se introducía un gato en una caja de acero junto a una pequeña cantidad de material radiactivo. La cantidad era tan pequeña que solo existía un 50% de posibilidades de que durante la hora siguiente uno de los átomos decayese. Si eso sucedía, se activaría un mecanismo que llenaría la caja de ácido hidrociánico, uno de los gases tóxicos utilizados en las trincheras de la Primera Guerra Mundial, y el gato moriría.

De acuerdo con los principios de la mecánica cuántica, durante el tiempo que durase el experimento, el gato estaría vivo y muerto al mismo tiempo, resultado de un fenómeno conocido como superposición. Sin embargo, esa circunstancia cambiaría cuando abriésemos la caja para acabar con la incertidumbre. En ese momento, de vuelta a la dura e incontrovertible realidad de la física clásica, el gato estaría o vivo o muerto.

Con el tiempo, los científicos han sido capaces de manipular los estados cuánticos de la materia y es posible que en el futuro este conocimiento sirva para construir potentes ordenadores cuánticos. Esta semana, en un artículo que se publica en la revista Science, un equipo de físicos de la Universidad de Yale (EE UU) muestra cómo ha logrado mantener un "gato de Schröedinger" cuántico vivo y muerto en dos lugares a la vez.

En realidad, estos gatos cuánticos son grupos de hasta cuatro fotones con estados entrelazados pese a estar en recipientes separados. El entrelazamiento es un fenómeno cuántico por el que las partículas subatómicas pueden alinear sus estados cuando están en contacto y mantenerlo después separadas, incluso a millones de kilómetros de distancia. El equipo de Yale, liderado por Chen Wang, fue capaz de introducir los fotones en receptáculos separados y modificar su estado, como el gato que está vivo o muerto, observando cómo cambiaban de forma coordinada.

El interés del trabajo, según explica Oriol Romero-Isart, investigador en el Instituto de Física Teórica de la Universidad de Innsbruck (Austria), es que “permite crear dos qbits (sistemas cuánticos que servirían para gestionar la información en ordenadores cuánticos) y aplicar correcciones para que duren más”. La inestabilidad de estos qbits hace que sean poco prácticos para construir máquinas cuánticas y es un reto para producir aplicaciones prácticas con este tipo de física. Normalmente, sin la aplicación de correcciones, un qbit se destruiría en menos de un segundo. Con las correcciones, comenzaría acercándose la posibilidad de emplear el potencial de un sistema en el que las partículas no solo sirven para codificar información a partir de unos y ceros, como en la computación convencional, sino que pueden aprovechar la posibilidad de que estén en varios estados al mismo tiempo.

La capacidad del grupo de Yale para crear “gatos de Schrödinger” de un gran número de fotones es importante porque para corregir los errores que hacen que el qbit se diluya en muy poco tiempo es mejor tener un sistema con muchas piezas. “Si nos imaginamos un sistema que pueda tener varios estados, en el que las partículas son canicas rojas y azules, si solo tienes una canica, cuando cambia el color, pierdes la información. Pero si tengo 100 canicas del mismo color, si solo cambia una de información, podría reparar el error y mantener la información gracias al resto”, explica Romero-Isart.

Las posibilidades que abren estudios como el publicado en Science son enormes, pero la extrañeza cuántica tiene sus límites. Aunque dos partículas entrelazadas seguirán estándolo aunque las mandemos a planetas separados por un millón de kilómetros, este sistema no serviría para transmitir información más rápido que la luz. La física no permite esa herejía y en este caso se conserva el dogma porque no es posible manipular a nuestro antojo el estado de esas partículas entrelazadas.

Entre las aplicaciones prácticas más cercanas de las máquinas cuánticas, Romero-Isart, que ha planteado la posibilidad de realizar un experimento en el que un objeto con millones de átomos esté en dos lugares a la vez, señala la simulación cuántica. “Se trataría de hacer un prototipo, de la misma manera que se hace con modelos de menor tamaño en aviación, para recrear un sistema cuántico muy complejo, como la física de los sólidos”, señala. “Saber cómo interaccionan los electrones en un sólido puede ayudarnos a entender cómo se puede crear un material en el que haya superconductividad a temperatura ambiente”, añade. Ahora, los materiales empleados para conducir la electricidad a temperatura ambiente, como el cobre, producen una enorme resistencia que limita su eficiencia. Este tipo de progresos llegarían antes que los ordenadores cuánticos, una tecnología posible, pero que aún requerirá mucho tiempo para hacerse realidad.

http://elpais.com/elpais/2016/05/25/ciencia/1464195525_734270.html?rel=lom

martes, 14 de junio de 2016

CIENCIAS BÁSICAS VIII EDICIÓN (2015). STEPHEN HAWKING Y VIATCHESLAV MUKHANOV

Los físicos Stephen Hawking y Viatcheslav Mukhanov son los ganadores del Premio Fundación BBVA Fronteras del Conocimiento en la categoría de Ciencias Básicas por descubrir que las galaxias se formaron a partir de perturbaciones cuánticas en el principio del universo.

La materia se agrupa en el universo formando galaxias, cúmulos de galaxias y supercúmulos de galaxias. Esas grandes estructuras de materia llevan creciendo poco más de 13.000 millones de años, es decir, desde que el universo empezó a expandirse en el big bang. Pero ¿cómo empezó el proceso? ¿Por qué empezó a acumularse la materia? A principios de los años ochenta Hawking y Mukhanov, trabajando de forma independiente, dijeron que en el universo recién nacido, fracciones de segundo después de iniciarse la expansión, tuvo que haber fluctuaciones cuánticas que actuaron como semillas de las galaxias. Nadie creía entonces que llegara a ser posible demostrar experimentalmente su existencia, pero han bastado tres décadas para que ocurriera exactamente eso: en 2013 un satélite europeo confirmó plenamente las predicciones.

El físico ruso Mukhanov, actualmente catedrático de Cosmología en la Ludwig-Maximilians Universität de Munich, Alemania, explicó ayer tras recibir la noticia del premio que “ni en sus mejores sueños“ imaginó, al hacer su predicción sobre el efecto de las fluctuaciones cuánticas, que sus predicciones llegarían a ser demostradas experimentalmente.

Mukhanov, con 24 años, publicó su trabajo en 1981, cuando aún era un estudiante de doctorado en el Instituto de Física y Tecnología de Moscú, donde investigaba bajo la influencia de grandes físicos teóricos, entre ellos Yakov Zeldovich –uno de los creadores de la bomba atómica–. “Yo no trabajaba para hacer feliz a los experimentos, trabajaba para hacer feliz a Zeldovich“, dijo ayer Mukhanov en tono de broma, que recuerda no obstante el ambiente de gran libertad científica que se respiraba en ese grupo, aún en el régimen de la Unión Soviética. Mukhanov firmó su trabajo con G. Chibisov, fallecido en 2008.

En los años setenta la cosmología era un área “todavía muy especulativa”, señala Mukhanov. Se sabía que el universo está expandiéndose, y que era muy probable que hubiera estado muy caliente en el pasado. Pero no mucho más. Apenas había datos observacionales, lo que contribuía a que no fuera un área muy importante en la Física. Sin embargo la formación de las galaxias era una de las cuestiones consideradas más relevantes, y también pensaba en ella Stephen Hawking.

En 1982, empleando modelos distintos a los de Mukhanov y Chibisov, Hawking llegó a esencialmente las mismas conclusiones.

Como explica el acta del jurado, “Stephen Hawking y Viatcheslav Mukhanov propusieron que las fluctuaciones cuánticas microscópicas eran el origen de la estructura observable a gran escala del universo. Este planteamiento, ahora validado por las observaciones, es un resultado fundamental en la cosmología“.

Mukhanov “fue el primero,1981, en reconocer que la estructura del universo, incluyendo la formación de las galaxias, podía tener origen cuántico microscópico”, indica el acta. “En 1982, Hawking estudió de manera independiente un escenario para la aceleración cósmica en presencia de fluctuaciones cuánticas, llegando a la misma conclusión“.

Hawking es probablemente más conocido por sus aportaciones fundamentales a la física de los agujeros negros. La predicción de que los agujeros negros no solo absorben materia y energía sino que también emiten la llamada radiación de Hawking también deriva de la aplicación de la teoría cuántica a los agujeros negros, pero carece aún de confirmación experimental.

El trabajo por el que recibe este premio, en cambio “puede considerarse el descubrimiento más importante de los confirmados experimentalmente en la unificación de la física teórica fundamental de partículas con la cosmología“, señala el jurado.

La luz fósil del big bang
La confirmación experimental de la teoría de que las fluctuaciones cuánticas en el universo recién nacido dieron lugar a las galaxias y las demás acumulaciones de materia que hoy vemos en el universo proviene del estudio de la llamada radiación cósmica de fondo de microondas. Esta radiación es una luz que llena todo el cielo, invisible al ojo humano pero detectable con sensores específicos. Los astrofísicos la detectaron por primera vez de modo casual en los años sesenta, y descubrieron que contiene una gran cantidad de información sobre cómo era el universo cuando empezó a expandirse. La mera existencia de esta radiación cósmica de fondo se considera una de las más sólidas pruebas a favor del big bang, y ha sido sobre todo su estudio detallado lo que ha recabado los ansiados datos experimentales en cosmología. Gracias a ello la investigación del origen del universo es hoy un área de gran actividad.

El análisis en profundidad de la radiación de fondo empezó en los años noventa con el satélite COBE, de la NASA. Un tipo de información que los científicos sabían que debía contener la radiación de fondo tenía que ver precisamente con la formación de las galaxías. Si hoy se observan –como efectivamente ocurre- acumulaciones de materia, hay que suponer que en el principio del universo también hubo irregularidades, por muy pequeñas que fueran. Y esas irregularidades debían estar en la radiación de fondo, medibles en forma de variaciones de temperatura.

La predicción de Mukhanov y Hawking indicaba que el origen de esas irregularidades se debía a fluctuaciones cuánticas, y calculaba cómo se traducirían a variaciones de temperatura en la radiación de fondo.

Sin embargo, las medidas de los primeros satélites, aunque consolidaron a grandes rasgos el modelo del big bang, tenían un grado de precisión aún demasiado bajo como para confirmar o desmentir la teoría de Mukhanov y Hawking. Lo que Mukhanov llamó ayer “la palabra final” la puso el satélite Planck, de la Agencia Espacial Europea (ESA), en 2013. Planck midió la temperatura de la radiación de fondo en toda la bóveda celeste con una precisión nunca antes alcanzada –diezmilésimas de grado-, y pudo así detectar regiones donde esa temperatura variaba ligerísimamente. "Planck ha medido exactamente, con una precisión del 99,999999.... %, lo que habíamos predicho", dice emocionado Mukhanov.

“Hoy Zeldovich sería inmensamente feliz“, prosigue, si conociera las medidas realizadas por el satélite Planck.

Mukhanov mostró además su satisfacción por recibir el premio junto a Hawking, a quien admira y con quien tiene una muy buena relación. No fue posible ayer obtener declaraciones del físico británico.

¿Por qué fluctuaciones cuánticas?
Una derivación de la predicción de los galardonados conduce a un aspecto de la teoría del big bang   que aún no se considera demostrado: la inflación. Así llaman los físicos a un brevísimo periodo nada más iniciada la expansión en que el universo creció de forma mucho más rápida a como lo ha seguido haciendo después. Para Mukhanov, la inflación es la mejor manera de explicar que las fluctuaciones cuánticas crecieron hasta dar lugar a las acumulaciones de materia actuales, pero admite que otros apuestan por hipótesis alternativas.

De lo que no hay duda es de que las fluctuaciones cuánticas existieron: sin ellas no hay manera de explicar las variaciones de temperatura medidas por Planck en la radiación de fondo. Ante la pregunta de por qué pensó en ellas cómo origen de las galaxias, Mukhanov responde: “¿Y quién sabe por qué se piensan las cosas?“. Sí explica que las fluctuaciones cuánticas son una conclusión obligada de uno de los principios sobre los que se sustenta toda la mecánica cuántica: el Principio de Incertidumbre de Heisenberg.

Este principio dice que no es posible tener una partícula en reposo absoluto en un punto dado: existe siempre una incertidumbre tanto en su posición como en su velocidad. Aplicado a una distribución homogénea de materia, como la que se supone que constituye el universo en sus primeros momentos, el principio de incertidumbre diría que no podemos localizar simultáneamente la materia y su velocidad y que, como consecuencia de ello, se producirían siempre irregularidades; es decir, las citadas fluctuaciones.

http://www.fbbva.es/TLFU/tlfu/esp/microsites/premios/fronteras/galardonados/2015/ciencias.jsp

Más información en El XL Semanal

jueves, 2 de junio de 2016

El primer telescopio se presentó hace 407 años. El invento de Galileo Galilei cambió el rumbo de la astronomía.

Las astrónomos están de fiesta, (se refiere al 25 agosto de 2009). Se cumplieron los 400 años desde la presentación oficial del primer telescopio ante el senado de Venecia, un invento con el que el científico italiano Galileo Galilei (1564-1642) cambió el rumbo de la astronomía. Este descubrimiento suponía poder ver el aspecto que los cielos ofrecían cuando se observaban con un original instrumento que aproximaba y agrandaba los objetos lejanos.

Este instrumento, un tubo con dos lentes, se había convertido, en manos de un hombre de ingenio, quizá en el más revolucionario instrumento de todos los tiempos. Todo comenzó en el inicio de 1609, cuando el genio italiano recibe noticias de la existencia de un instrumento maravilloso capaz de "acercar" los objetos. Galileo construyó su primer telescopio en el verano de aquel año y en diciembre se lanzó a observar el firmamento con instrumentos de una calidad adecuada.

Aquel invento fue también el comienzo de los quebraderos de cabeza para Galileo. La Inquisición le puso en el punto de mira porque defendía la teoría heliocéntrica: el Sol era el centro del universo y la Tierra giraba a su alrededor. El 24 de febrero de 1616 una comisión de teólogos consultores de la Inquisición censuró la teoría heliocéntrica y reafirmó la "inmovilidad" de la Tierra.

Francisco Gálvez, astrónomo de la Sociedad Malagueña de Astronomía, explica lo que supuso para aquella época poder observar el cielo. "Se descubrió que la Tierra no era el centro del universo, como se pensaba en aquella època, sino que había otros planetas en torno a los cuales giraban los objetos celestes". Recuerda que se descrubrió que existían más estrellas que las que se apreciaban a simple vista y que la Luna "no era tan perfecta como se pensaba", sino que tenía valles, montañas y montes escarpados". "Se dieron cuenta de que la Luna se parecía a la Tierra", asegura Gálvez.

Lo que vio Galileo
La Inquisición no pudo detener el avance de la ciencia. Galileo descubrió, que la Luna no era lisa, pues mostraba montañas y valles, muchas y nuevas estrellas aparecían donde antes sólo había oscuridad, la Vía Láctea no era una mancha lechosa, sino un conjunto casi infinito de pequeños puntos luminosos, y el planeta Júpiter ya no estaba sólo, sino acompañado por cuatro pequeños puntos que giraban a su alrededor.

En 1633, Galileo fue condenado, a pesar de la protección de los Medici, por los inquisidores y forzado a abjurar, de rodillas y bajo amenaza de torturas, de la teoría de Copérnico.

Precisamente semanas antes del aniversario del primer objeto que acercaba los objetos del cielo al ojo humano, otro telescopio mucho más sofisticado, el Spitzer ha detectado los restos del choque de dos incipientes planetas en torno a una estrella. La ciencia no para. Se trata de un "hecho muy poco frecuente y de corta duración pero crucial en la formación de planetas", señaló Carey Lisse, científico del Laboratorio de Física Aplicada de la Universidad Johns Hopkins. Y es que en la ciencia de la astronomía, la tecnología está ligada siempre con cualquier descubrimiento.

Google también lo celebra
El buscador Google, siempre tan cercano a la actualidad, ha celebrado el cumpleaños de la presentación del primer telescopio lanzando una versión de su logo customizado que recuerda este aniversario.

http://sociedad.elpais.com/sociedad/2009/08/25/actualidad/1251151202_850215.html?rel=lom

miércoles, 20 de abril de 2016

El hombre que no fue al colegio hasta los 12 años y ganó el Nobel de Física Samuel Ting sobrevivió a la II Guerra Mundial en China y fue a la universidad en EE UU sin saber inglés. Ahora dirige uno de los experimentos más ambiciosos y caros del mundo

El físico Samuel Ting creció en China durante la II Guerra Mundial. “Había un montón de aviones japoneses que venían a visitarnos y nos tiraban bombas. En esa situación tuve la suerte de no tener que ir al colegio”, explicaba hace unos días este físico en Madrid, horas antes de ofrecer una conferencia organizada por la Fundación BBVA.

Ting dice con orgullo que dirige “el experimento más caro jamás enviado al espacio”. Se trata del Espectrómetro Magnético Alfa (AMS), un imán de 7,5 toneladas instalado en la Estación Espacial Internacional, que orbita a unos 300 kilómetros sobre la superficie terrestre. El único lugar donde puede encontrarse tecnología con el mismo coste y precisión (unos 2.000 millones de euros) es en el CERN de Ginebra, sede del mayor acelerador de partículas del mundo, asegura.

El AMS es un instrumento único en su tipo. Está concebido para buscar materia oscura, el misterioso ingrediente que compone el 27% del universo, con una precisión jamás alcanzada. El detector espacial compite con muchos otros instrumentos terrestres que usan otro tipo de tecnologías y entre los que existe una enorme rivalidad. En esta entrevista, Ting explica a Materia sus últimos resultados y recuerda la tortuosa historia que le llevó hasta lo más alto de la ciencia.

Samuel Chao Chung Ting nació prematuro en 1936 cuando sus padres, ambos profesores universitarios en China, estaban de visita en Michigan. De vuelta a su país estalló la guerra. "Mis padres siempre se ocuparon de que tuviéramos alimentos. Las condiciones durante la Guerra eran horribles. No teníamos que vestir buena ropa, ni ir a la escuela, pero sí tener buena comida, lo suficiente para mantener la salud. Mis dos padres además me contaban historias de Isaac Newton, Michael Faraday, James Clerk Maxwell, Charles Darwin. Mi madre me contaba la de Sigmund Freud. Por eso desde que fui joven tuve la impresión de debía ir a la universidad". Después se mudaron a Taiwán y sus padres le llevaron por primera vez al colegio. Tenía 12 años, asegura. “Cuando llegué no era un buen estudiante, obviamente. Pero mis padres nunca me culparon, nunca me presionaron, lo único que hicieron fue apoyarme”, explica. A esa edad se comenzó a interesar por tres materias: matemáticas, física e historia de China.

La familia regresó a EE UU en plena Guerra Fría, mientras el bloque comunista y EE UU dedicaban ingentes cantidades de dinero a perfeccionar su arsenal atómico. Ting tenía 20 años y no hablaba inglés. "No tuve que pagar nada en la Universidad de Michigan y se aseguraron de que no tuviese que estudiar historia de EE UU, sociología, economía, solo concentrarme en la física y las matemáticas". Se sacó el doctorado en seis años y, tal vez por eso, al acabar en 1962, el Laboratorio Lawrence Livermore, parte de la maquinaria nuclear del país, le ofreció un puesto por 30.000 dólares, una fortuna. Su otra propuesta, la de la Universidad de Columbia, en Nueva York, era cuatro veces menos. “Pensé un rato y decidí que si me iba a Livermore nunca publicaría nada, solo hacer lo que otra gente me ordenara, así que decidí irme a Columbia”, explica.

Ting aún habla inglés con un marcado acento oriental, pero su concentración total en unas pocas disciplinas y la certeza de que solo hay que concentrarse en un solo experimento cada vez le ha permitido hacer contribuciones fundamentales en su campo. En los 60, uno de los presupuestos más aceptados para los físicos era que el electrón tenía talla. Mudado al acelerador de partículas Desy, en Hamburgo (Alemania), Ting tuvo el suficiente valor para realizar una nueva comprobación. “Resultó que todos los experimentos anteriores estaban equivocados, el electrón no tiene tamaño, no puedes medir su talla. Debido a ese experimento, que probó que profesores bien establecidos estaban equivocados, la gente empezó a fijarse en mí”, recuerda.

En 1974 este físico rebelde desató la llamada Revolución de Noviembre, que confirmó que los neutrones y protones dentro del átomo no son indivisibles, sino que están hechos de unidades aún más pequeñas, los quarks. De forma independiente y casi simultánea, Burton Richter, del Acelerador Lineal de Stanford, y Samuel Ting, que trabajaba en el Laboratorio Nacional Brookhaven, descubrieron el mesón J, formado por un quark y un antiquark. Richter y Ting ganaron el Nobel de Física apenas dos años después de su hallazgo,un tiempo récord en lograr el premio más prestigioso de la ciencia. Después siguieron muchos descubrimientos similares cuya estela llega hasta 2013, cuando se atrapó al bosón de Higgs, la última partícula fundamental que quedaba para conocer todas las que componen las entrañas de la materia.

En la atualidad, los últimos cálculos indican que esa materia solo compone el 5% del universo, mientras la materia oscura, invisible, supone el 27%. El experimento actual de Ting está buscándola a través de los rayos cósmicos, un tipo de radiación que llega a tener hasta 10.000 veces más energía que el LHC de Ginebra. Al chocar, estos rayos generan antimateria, en concreto positrones, el reverso del electrón. La materia oscura también produce positrones al chocar con la materia corriente así que si realmente está bombardeando a la Tierra, el AMS debería detectar un exceso importante de estas partículas.

El AMS es fruto de una gran colaboración científica de 600 científicos de 16 países, incluida España,y que cuenta con el aporte indiospensable de la NASA. Empezó a tomar datos hace cinco años tras viajar al espacio a bordo del transbordador Endeavour. Desde entonces, el instrumento ha captado 80.000 millones de rayos cósmicos, explica Ting. "Eso es más de todo lo que se ha recolectado en todo el mundo en el último siglo“. El Experimento aún necesitará otros cinco años para acabar su objetivo: rastrear partículas en todos los rangos de energía, pero ya ha visto "indicios de Materia oscura", dice Ting. "Desde que comenzamos a tomar datos estamos viendo montones de positrones, muchos más de los que podríamos esperar de colisiones ordinarias. Cuando miramos a la distribución de esos positrones, encajan con los modelos que describen la materia oscura”, asegura el físico.

-Entonces, ¿de qué está hecho este componente del cosmos?
-Por ahora, lo que hemos visto es coherente con la supersimetría. Pero esto no significa que hayas probado que existe la supersimetría, para eso hay que acabar de recoger datos

La supersimetría mantiene que cada partícula conocida tiene una gemela desconocida. La materia oscura estaría hecha de partículas supersimétricas. Aunque esto aún no está demostrado, sí se sabe que la interacción de este elemento con la materia convencional es esencial para nuestra existencia, pues sin su empuje gravitatorio las galaxias se desmenuzarían y no serían posibles estrellas o planetas como la Tierra.

Ting dice que no puede dar más datos porque aún debe completar observaciones de positrones a los rangos de energía más altos, los de mayor intensidad. Sólo entonces se podrá saber si han capturado materia oscura y si existe la supersimetría, un descubrimiento que dejaría en nada cualquiera que haya hecho este hombre que no pisó un colegio hasta ser un prepúber. “Tardaremos cinco años más en recoger todos los datos”, concluye.

jueves, 24 de diciembre de 2015

Cómo utilizar la técnica de Feynman para identificar pseudociencia

por SIMON OXENHAM

La semana pasada un nuevo estudio fue noticia en todo el mundo, demostrando sin rodeos la capacidad humana para ser engañados por "mierda pseudo profunda" de la talla infame de Deepak Chopra, para parecer profunda que suena aún declaraciones totalmente sin sentido, al abusar de lenguaje científico.

Todo esto está muy bien, pero ¿cómo se supone que debemos saber que estamos siendo engañados cuando leemos una cita sobre la teoría cuántica de alguien como Chopra, si no sabemos nada acerca de la mecánica cuántica?

En una conferencia impartida por Richard Feynman en 1966, el influyente físico teórico contó una historia acerca de la diferencia entre conocer el nombre de algo y realmente entenderlo:

"Un chico me dijo:" ¿Ves ese pájaro de pie allí en el muñón? ¿Cuál es su nombre? ' Le dije: 'No tengo la menor idea.' Me dijo: 'Es un zorzal de garganta parda. Tu padre no te enseña mucho sobre ciencia."

Sonreí para mí, porque mi padre ya me había enseñado que [el nombre] no me dice nada sobre el pájaro. Él me enseñó 'Mira ese pájaro? Es un zorzal de garganta parda, pero en Alemania se llama un halsenflugel, y en chino lo llaman un chung ling e incluso si usted sabe todos esos nombres de él, aún no sabe nada sobre el pájaro - sólo sabe algo acerca de la gente; como ellos llaman al pájaro. Ahora que el tordo canta, y enseña a sus crías a volar, y vuela tantas millas de distancia durante el verano en todo el país, y nadie sabe cómo encuentra su camino, "y así sucesivamente. Hay una diferencia entre el nombre de la cosa y lo que sucede.

El resultado de esto es que no puedo recordar el nombre de alguien, y cuando la gente habla de la física conmigo a menudo están exasperados cuando dicen, 'el efecto Fitz-Cronin,' y me preguntan, '¿Cuál es el efecto? y no puedo recordar el nombre ".

Feynman continuó: "Hay un libro de ciencia de primer grado que, en la primera lección, comienza de una manera lamentable para enseñar la ciencia, ya que comienza con la idea equivocada de lo que es la ciencia. Hay una foto de un perro - un perro de juguete enrollable - y una mano trata de bobinarlo, y luego el perro es capaz de moverse. En la última imagen, dice, "¿Qué hace que se mueva? Más tarde, hay una foto de un perro real y pregunta: "¿Qué hace que se mueva? Entonces hay una foto de una moto y pregunta: "¿Qué hace que se mueva? y así.

Al principio pensé que se estaban preparando para decir lo que la ciencia dice sobre - la física, la biología, la química - pero eso no fue todo. La respuesta estaba en la edición del libro del profesor: La respuesta que yo estaba tratando de aprender era que "es la energía la que hace que se mueva ".

Ahora, la energía es un concepto muy sutil. Es muy, muy difícil hacerlo bien. Lo que quise decir es que no es fácil de entender lo suficiente la energía como para usarlo bien, así que se puede deducir algo correctamente con la idea de la energía - que está más allá del primer grado. Sería igual de bien decir que "Dios hace que se mueva ', o,' El Espíritu hace que se mueva", o, "La función de transporte hace que se mueva". (De hecho, uno igualmente podría decir bien, ' La energía hace que se detenga.')

Mírelo de esta manera: Eso es sólo la definición de la energía; debe ser revertida. Podríamos decir cuando algo puede pasar que tiene la energía en él, pero no lo que hace que se mueva es energía. Esta es una diferencia muy sutil. Es lo mismo con la proposición inercia.

Tal vez pueda marcar la diferencia un poco más claro de esta manera: Si le preguntas a un niño por lo que hace mover al perro de juguete, usted debe pensar acerca de lo que un ser humano ordinario respondería. La respuesta es que terminaste el descanso; intenta relajarse y empuja el tren de vuelta.

¡Qué buena manera de comenzar un curso de la ciencia! Desmontar el juguete; Mira como funciona. Observar con inteligencia los engranajes; ver los trinquetes. Aprenda algo sobre el juguete, la forma en que el juguete se junta, el ingenio de la gente ideando los trinquetes y otras cosas. Eso es bueno. La pregunta está bien. La respuesta es un poco desafortunada, porque lo que estaban tratando de hacer es enseñar una definición de lo que es la energía. Pero es nada lo que se aprende.

Supongamos que un estudiante pudo decir: "No creo que la energía haga que se mueva". ¿De dónde y cómo viene la discusión ahí?

Finalmente me di cuenta de una manera para probar si usted ha enseñado una idea o si sólo han enseñado una definición. Pruebe de esta manera: Usted dice, 'Sin utilizar la nueva palabra que usted acaba de aprender, trata de reformular lo que acabas de aprender con tus propias palabras. Sin utilizar la palabra "energía", dime lo que sabes ahora sobre el movimiento del perro." No puedes. Así que no has aprendido nada de ciencia. Eso puede estar bien. Puede que no quiera aprender algo acerca de la ciencia de inmediato. Tienes que aprender las definiciones. Pero para una primera lección, debe posiblemente que no sea destructivo?

Creo que para la lección número uno,  aprender una fórmula "mística" para responder a las preguntas es muy malo. El libro tiene algunos otros ejemplos: 'gravedad hace caer;' 'las suelas de los zapatos se desgastan debido a la fricción. El cuero de los zapatos lo lleva a cabo, ya que se frota contra la acera y las pequeñas muescas y protuberancias en las piezas de agarre de la acera y tirar de ellos fuera. Decir simplemente que es debido a la fricción, es triste, porque no es ciencia."

La parábola de Feynman sobre el significado de la ciencia es una valiosa manera de ponernos a prueba a nosotros mismos para ver si realmente hemos aprendido algo, o si sólo pensamos que hemos aprendido algo, pero es igualmente útil para probar las afirmaciones de los demás. Si alguien no puede explicar algo en el lenguaje llano, entonces debemos cuestionar si realmente ellos entienden lo que dicen. Si la persona en cuestión se está comunicando con el pretexto de un público no especialista en el uso de términos especializados fuera de contexto, la primera pregunta en los labios debe ser: "¿Por qué?" En palabras de Feyman, "Es posible seguir la forma y lo llaman ciencia, pero eso es pseudociencia".
https://lacienciaysusdemonios.com/2010/10/16/richard-feynman-y-la-pseudociencia/

miércoles, 7 de octubre de 2015

3 claves para motivar a tu hijo cuando no quiere estudiar. Demostrarles el valor del esfuerzo, regañar pero darles refuerzos positivos y educar con el ejemplo son algunas de las ideas de los expertos

“Es que estudiar es un rollo”. Esa es la frase que nuestros hijos nos suelen repetir cuando les mandamos hacer los deberes o prepararse ese examen que sabemos que apenas se han mirado. El problema es que no nos paramos a pensar que detrás de esa frase hay más de lo que parece. Puede que lo que nuestro hijo necesite en ese momento no sea solo una orden, sino motivos para ponerse a estudiar. Puede que el problema no sea falta de capacidad, sino falta de motivación.

Es lógico, vivimos en una sociedad en la que la prensa del corazón y los programas de televisión nos ofrecen modelos a seguir más que cuestionables, y al final, es fácil que se caiga en esa idea de “es que estudiar no sirve para nada”. Esa es la idea contra la que intenta luchar David Calle, uno de los profesores online más conocidos de la red gracias a su portal en YouTube Unicoos, donde ofrece clases gratuitas de ciencias, que han sido la salvación de muchos alumnos. “Los niños y los jóvenes no son conscientes de la dificultad más allá del confort de sus habitaciones, y no ven que personas que admiran han llegado hasta dónde están a base de trabajar más duro que nadie”, por lo que “es nuestra obligación transmitirles esperanza, pero también grandes dosis de realidad”.

De hecho, el profesor se plantea que si por algo han destacado sus vídeos respecto a otros de contenido similar, es por la energía que transmite a sus alumnos. “No paro de insistirles en que si se esfuerzan no hay casi nada que no puedan conseguir. Y trato de ser el primero que no se rinde nunca, que trabaja como un loco, que no para una día tras otro de hacer cosas diferentes para mejorar, con tal de servirles de inspiración y que sepan que todo tiene su recompensa, pero que viene acompañado de esfuerzo”. Y es que se educa más con el ejemplo, que con la palabra.

NO TE RINDAS NUNCA (perseverancia)
En ese buscar ideas diferentes para mejorar, David Calle acaba de publicar el libro ‘No te rindas nunca’ (Planeta), que lejos de ser un libro de ciencias, es un manual en el que buscar la motivación que a veces les falta a nuestros hijos, y que nosotros no sabemos muy bien cómo inspirarles. “El libro propone otra forma de ver las cosas, para que afronten todos los retos que les esperan de forma más optimista y más positiva. Para que piensen que el primer beneficiado serán ellos mismos. Además, incluye varios capítulos dedicados a consejos para estudiar y preparar los exámenes, para que puedan descubrir que no hay nada imposible”. De esta forma, y al más estilo “twitter”, con frases cortas y directas, el autor recoge datos, anécdotas, historias de personajes conocidos, esquemas e ideas que sirven a modo de consejos, pero también de inspiración. Así acuña ideas como aquella de “no se trata de ser el mejor, sino lo mejor que puedas llegar a ser tú mismo”.

Planteando cómo la motivación es un aspecto clave de la educación, la pedagoga Cristina Conde, explica que “los educadores creemos que es clave generar en nuestros alumnos motivación, que tengan ganas de aprender, curiosidad, incertidumbre”. Desde su perspectiva profesional, esta muchas veces puede generarse haciendo preguntas para que ellos mismos busquen las respuestas, aunque después se les ayude a aclarar los conceptos y a buscar ejemplos que les ayude a entenderlo. Igualmente, no se olvida de la importancia del refuerzo positivo. “El refuerzo positivo consiste en valorar todo aquello que hacen bien y reconocérselo con frases como ‘muy bien’, ‘eso es’, ‘estas mejorando mucho’, ‘sigue así’. Y es que muchas veces nos acordamos de realizar las críticas, pero no de dar las necesarias “palmaditas”, como un “tú vales mucho, no te rindas nunca”.

UNA NUEVA FORMA DE EDUCAR
Pese a estas ideas, Cristina Conde opina que uno de los motivos por los que muchas veces los alumnos se enfrentan a sus tareas de clase con falta de motivación es simplemente “por la obligatoriedad con la que se toman las actividades. Además, normalmente se estudia por motivación extrínseca, es decir, para alcanzar las recompensas prometidas o para evitar los castigos. Sin embargo, cuando un alumno estudia con motivación intrínseca, es decir, por interés propio, es entonces cuando aprende de verdad”.

Para ello, quizás, lo que sea necesario es dar otra perspectiva a la educación, que desde el punto de vista de la experta también puede apoyarse en las posibilidades que aportan las nuevas tecnologías. “Las tablets, plataformas educativas, o los juegos educativos online son herramientas extraordinarias para captar la atención de los alumnos y realizar sesiones más dinámicas y atrayentes”, aporta la pedagoga, que insiste en que “la combinación de diferentes elementos permite crear sesiones adaptadas a las necesidades de los niños de nuestro tiempo. Además, sea cual sea la metodología elegida, es conveniente buscar siempre la participación del alumnado”.

En ese sentido, David Calle, tras años de experiencia, tanto en academias como de “profesor online”, recuerda una frase de W. B. Yeats: “Enseñar no es como llenar un cubo, sino como encender una hoguera”, y es que en su opinión “eso es lo que debemos hacer los profesores en las aulas, y los padres en sus casas, encender hogueras”.

LA ACTITUD DE LOS PADRES
Para el autor de ‘No te rindas nunca’(persistencia), es igual de importante lo que ocurre dentro de las aulas como fuera de ellas, y es que muchas veces la desmotivación viene de casa. “No creo en el castigo, creo más en el refuerzo positivo que en el negativo, pero lo que no tiene sentido es que después de haber suspendido varias asignaturas les compremos un nuevo móvil, el último modelo de zapatillas o una videoconsola. No puede premiárseles si no están dando todo lo que tienen (para lo que es importante conocer a nuestros hijos)”, agregando que “lo que sí podemos premiar son sus éxitos, por muy pequeños que sean, proporcionalmente, por supuesto…”

Así, el consejo de David Calle, que además de su propia faceta de padre, acostumbra a tratar con sus alumnos en las redes sociales, es que “los padres deben ser exigentes, un equilibrio entre firmes, pero cariñosos. Debemos regañarlos, desde el cariño y el respeto, pero debemos hacerlo. De hecho, les ayuda a tolerar el fracaso y a aceptar la crítica”. Y es que, en su libro llama a los jóvenes a reflexionar sobre la frase “si tus padres fueran tus amigos serías huérfano”. Pese a ello, recuerda que también es bueno compartir con nuestros hijos tanto nuestros éxitos, como nuestros fracasos, “que sepan que nadie es infalible, pero que el esfuerzo y el trabajo duro tiene recompensas”.

Cristina Conde, por su parte, recuerda que si obviamente todos queremos lo mejor para nuestros hijos, “en ocasiones madres y padres se desesperan y pierden la paciencia, cosa que tampoco ayuda.”. Así, su recomendación es que “los padres piensen como les gustaría a ellos que se lo explicaran, teniendo en cuenta la edad que tienen sus hijos”. De esta forma concluye apuntando que “hoy en día el estrés y las prisas con las que viven muchos adultos no ayuda a sus hijos a asimilar los conocimientos que necesitan para su desarrollo”, por eso, no viene mal que también nos podamos apoyar en las tecnologías y en libros motivacionales para buscar esas ideas que nosotros mismos no encontramos.

http://smoda.elpais.com/articulos/como-motivar-a-nuestros-hijos-para-que-estudien/6820

lunes, 21 de septiembre de 2015

Manzanas. Seréis expulsados del paraíso de la ciencia y vuestro cerebro seguirá siendo corroído y manipulado por la superstición


La inteligencia humana se ha movido simbólicamente en torno a tres manzanas.

Primero fue la manzana del paraíso que la serpiente ofreció a Eva. Si coméis el fruto del árbol de la ciencia del bien y del mal seréis como dioses. El texto original en hebreo se fue adulterando al pasar por diversas traducciones del griego al latín. Se supone que la serpiente ofreció a Eva una propuesta hacia el conocimiento, pero el cristianismo adoptó una acepción equivocada de manzana, malum en latín, y transformó en pecado lo que en la lengua original se exponía de manera positiva y liberadora. La religión católica ha seguido interpretando la pérdida del paraíso como castigo ejemplar frente a la teoría de la evolución.

La segunda manzana fue la que, según la tradición, le cayó a Newton en la cabeza y le impulsó a desarrollar la ley de la gravedad, llave de la física moderna, que ha permitido que una sonda espacial haya llegado a Plutón después de recorrer 5.000 millones de kilómetros.

La tercera manzana preside hoy la empresa más exitosa de nuestro siglo. Apple muestra con orgullo su logo universalmente conocido, una manzana con un pequeño mordisco cuyo significado alude de nuevo a la liberación que proporciona el conocimiento.

La nueva Ley de Educación perpetrada por el infausto ministro Wert equipara las manzanas de la física y de la informática con la manzana del paraíso, que solo es fruto de un cuento mágico, paradigma de la culpa de la inteligencia, origen de todos los males.

La enseñanza de la religión como asignatura favorecida y evaluable pone a Eva al mismo nivel de Newton y de Alan Turing, padre de los nuevos ordenadores. Pero hoy la serpiente diría a los alumnos: si mordéis esta manzana de Wert no seréis como dioses. Seréis expulsados del paraíso de la ciencia y vuestro cerebro seguirá siendo corroído y manipulado por la superstición.

El País. 20 SEP 2015 - http://elpais.com/elpais/2015/09/18/opinion/1442588941_914907.html

Las ideas no son manzanas.
“If you have an apple and I have an apple and we exchange these apples then you and I will still each have one apple. But if you have an idea and I have an idea and we exchange these ideas, then each of us will have two ideas.”

Si tú tienes una manzana y yo tengo una manzana y las intercambiamos, entonces ambos aún tendremos una manzana. Pero si tú tienes una idea y yo tengo una idea y las intercambiamos, entonces ambos tendremos dos ideas.

Este simple ejemplo de George Bernard Shaw debería ser suficiente para mostrar la diferencia fundamental entre el conocimiento y los bienes materiales. Sin embargo, parece ser la tendencia actual el cubrir al conocimiento con un manto de escasez artificial, impidiendo su difusión para de esta forma asemejarlo a las cosas materiales y tratarlo como a estas últimas...
Seguir leyendo aquí.

martes, 11 de agosto de 2015

Mi tabla periódica. Me entristece no ser testigo de la nueva física nuclear, ni de otros miles de avances en las ciencias físicas y biológicas

Espero con entusiasmo, casi ansiosamente, la llegada semanal de revistas como Nature y Science, y me dirijo inmediatamente a los artículos sobre ciencias físicas, y no, como tal vez debería, a los que tratan de biología y medicina. Las ciencias físicas fueron las primeras en fascinarme siendo niño.

En una reciente edición de Nature había un apasionante artículo del físico Frank Winczek, ganador de un premio Nobel, sobre una nueva manera de calcular las masas ligeramente diferentes de los neutrones y los protones. El nuevo cálculo confirma que los neutrones son muy poco más pesados que los protones (la ratio entre sus masas es de 939,56563 a 938,27231). Se podría pensar que la diferencia es insignificante, pero si no fuese así, el universo, tal como lo conocemos, nunca habría llegado a desarrollarse. La capacidad de calcular algo así, dice Wilczek, “nos anima a predecir un futuro en el que la física nuclear alcanzará el nivel de precisión y versatilidad ya logrado por la física atómica”, una revolución que, por desgracia, yo nunca veré.

Francis Crick estaba convencido de que “el problema difícil” —entender cómo el cerebro produce la conciencia— estaría resuelto en 2030. “Tú lo verás”, solía decirle a Ralph, mi amigo neurólogo, “y tú también, Oliver, si llegas a mi edad”. Crick vivió hasta avanzados los 80 años, trabajando y pensando sobre la conciencia hasta el final. Ralph murió prematuramente, a la edad de 52 años, y ahora yo sufro una enfermedad terminal a los 82. Debo decir que no tengo demasiada experiencia con el “problema difícil” de la conciencia. La verdad es que no lo veo como un problema en absoluto, pero me entristece no ser testigo de la nueva física nuclear que vislumbra Wiczek, ni de otros miles de avances en las ciencias físicas y biológicas.

Vi el cielo entero “salpicado de estrellas”. Me hizo darme cuenta de repente de qué poca vida me quedaba

Hace unas semanas, en el campo, lejos de las luces de la ciudad, vi el cielo entero “salpicado de estrellas” (en palabras de Milton). Un cielo así, imaginé, solo se debía de poder contemplar en altiplanos secos y elevados como el de Atacama, en Chile (donde se encuentran algunos de los telescopios más potentes del mundo). Fue ese esplendor celestial el que me hizo darme cuenta de repente de qué poco tiempo, qué poca vida me quedaba. Para mí, mi percepción de la belleza del cielo, de la eternidad, estaba asociada indisolublemente a una sensación de fugacidad y muerte.

Dije a mis amigos Kate y Allen: “Me gustaría ver un cielo así cuando esté muriendo”.

Ellos me respondieron: “Nosotros empujaremos la silla de ruedas”.

Desde que en febrero escribí que tenía cáncer con metástasis, los cientos de cartas recibidas, las expresiones de cariño y aprecio, y la sensación de que (a pesar de todo) he vivido una vida buena y provechosa, me han consolado. Estoy muy feliz y agradecido por todo ello, pero nada me ha impactado tanto como lo hizo aquel cielo nocturno cubierto de estrellas.

Desde mi infancia he tenido la tendencia a afrontar la pérdida —pérdida de personas queridas— recurriendo a lo no humano. Cuando, siendo un niño de seis años, me enviaron a un internado a principios de la II Guerra Mundial, los números se hicieron mis amigos; cuando regresé a Londres a los 10, los elementos y la tabla periódica se convirtieron en mis compañeros. Las épocas de tensión a lo largo de mi vida me han llevado a volverme, o a volver, a las ciencias físicas, un mundo en el que no hay vida, pero tampoco muerte.

Y ahora, en este punto crítico, cuando la muerte ya no es un concepto abstracto, sino una presencia —demasiado cercana e innegable— vuelvo a rodearme, como cuando era pequeño, de metales y minerales, pequeños emblemas de eternidad. En un extremo de mi escritorio, en un estuche, tengo el elemento 81 que me enviaron unos amigos de los elementos de Inglaterra; en el estuche dice: “Feliz cumpleaños de talio”, un recuerdo de mi 81º cumpleaños, el pasado julio. Y después está el reino dedicado al plomo, el elemento 82, por mi 82º cumpleaños, que acabo de celebrar a principios de este mes. En él hay también un pequeño cofre de plomo que contiene el elemento 90: torio, torio cristalino, tan bello como los diamantes, y, por supuesto, radioactivo (de ahí el cofre de plomo).

Tengo náuseas y pérdida de apetito; escalofríos de día y sudores de noche; y un cansancio generalizado

A principios de año, las semanas después de enterarme de que tenía cáncer, me sentía muy bien a pesar de que la mitad de mi hígado estaba invadido por la metástasis. Cuando, en febrero, se aplicó a mi enfermedad un tratamiento consistente en inyectar gotas minúsculas en las arterias hepáticas (un procedimiento conocido como embolización), me encontré fatal durante un par de semanas, pero luego me sentí fenomenal, cargado de energía física y mental. (Casi todas las metástasis habían sido aniquiladas por la embolización). No se me había concedido una remisión, pero sí un descanso, un tiempo para profundizar amistades, visitar pacientes, escribir y volver a mi país natal, Inglaterra. Entonces la gente apenas podía creer que estuviese en fase terminal, y yo mismo podía olvidarlo fácilmente.

Esa sensación de salud y energía empezó a decaer cuando mayo dejó paso a junio, pero pude celebrar mi 82º cumpleaños por todo lo alto. (Auden solía decir que uno debería celebrar siempre su cumpleaños, no importa cómo se encuentre). Pero ahora tengo un poco de náusea y pérdida de apetito; escalofríos durante el día y sudores por la noche; y, sobre todo, un cansancio generalizado acompañado de agotamiento repentino cuando hago demasiadas cosas. Sigo nadando a diario, aunque ahora más despacio, ya que estoy empezando a notar que me falta un poco el aliento. Antes podía negarlo, pero ahora sé que estoy enfermo. Un TAC realizado el 7 de julio confirmó que las metástasis no solo se habían reproducido en el hígado, sino que se había extendido más allá de él.

La semana pasada empecé un nuevo tipo de tratamiento: la inmunoterapia. No está exenta de riesgos, pero espero que me proporcione unos cuantos buenos meses más. No obstante, antes de empezar con ella, quería divertirme un poco haciendo un viaje a Carolina del Norte para ver el maravilloso centro de investigación sobre lémures de la Universidad de Duke. Los lémures están próximos a la estirpe ancestral de la que surgieron todos los primates, y me gusta pensar que uno de mis propios antepasados, hace 50 millones de años, era una pequeña criatura que vivía en los árboles no tan diferente de los lémures actuales. Me encantan su saltarina vitalidad y su naturaleza curiosa.

Junto al círculo de plomo de mi mesa está la tierra del bismuto: bismuto de origen natural procedente de Australia; pequeños lingotes de bismuto en forma de limusina de una mina de Bolivia; bismuto fundido y enfriado lentamente para formar hermosos cristales iridiscentes escalonados como un poblado hopi; y, en un guiño a Euclides y la belleza de la geometría, un cilindro y una esfera hechos de bismuto.

El bismuto es el elemento 83. No creo que llegue a ver mi 83º cumpleaños, pero creo que hay algo esperanzador, algo alentador en tener cerca el “83”. Además, siento debilidad por el bismuto, un humilde metal gris, a menudo desdeñado e ignorado, incluso por los amantes de los metales. Mi sensibilidad de médico hacia los maltratados y los marginados se extiende al mundo inorgánico y encuentra un paralelo en mi simpatía por el bismuto.

Es casi seguro que no seré testigo de mi cumpleaños de polonio (el número 84), ni tampoco querría tener polonio cerca de mí, con su radiactividad intensa y asesina. Pero en el otro extremo de mi mesa —de mi tabla periódica— tengo un bonito trozo de berilio (elemento 4) elaborado mecánicamente para que me recuerde mi infancia y lo mucho que hace que empezó mi vida próxima a acabar.

Oliver Sacks es profesor de neurología en la Escuela de Medicina de la Universidad de Nueva York. Su último libro es la autobiografía On the move (En movimiento). Este artículo se publicó originalmente en The New York Times
© Oliver Sacks, 2015