Mostrando entradas con la etiqueta Grigori Perelman. Mostrar todas las entradas
Mostrando entradas con la etiqueta Grigori Perelman. Mostrar todas las entradas

miércoles, 7 de abril de 2021

Grigori Perelman, el genio matemático que resolvió uno de los 7 problemas del milenio y se retiró del mundo.


Hace más de una década, Grigori Perelman, uno de los grandes cerebros del siglo XXI, le dijo 'adiós' a su profesión y a la vida pública.

Ya para entonces era mundialmente famoso por resolver uno de los más difíciles enigmas matemáticos cuyos orígenes se remontaban al siglo XVIII.

La antigua ciudad prusiana Königsberg -hoy Kaliningrado, Rusia- tenía siete puentes, pues el río Pregel no sólo la atravesaba, sino que se bifurcaba creando una isla y dividiéndola en cuatro regiones.

A modo de juego para los intelectuales de la época, se formuló una pregunta que se convertiría en un célebre problema matemático:

¿Es posible dar un paseo comenzando desde cualquiera de las cuatro regiones de Königsberg, cruzando todos los puentes una sola vez y regresando al mismo punto de partida?

Eventualmente, en 1735, el gran matemático Leonhard Euler dio la respuesta: no era posible.

Para resolver el problema, dio un salto conceptual.

Se dio cuenta de que las distancias entre los puentes eran irrelevantes; lo que realmente importaba era cómo estaban los puentes conectados entre sí.

Más fascinantes detalles sobre Leonhard Euler y la solución de ese enigma hace 300 años
La solución de Euler era importante porque no se aplicaba únicamente a la ciudad de Königsberg, sino también a todas las configuraciones que eran topológicamente iguales.

¿Topológicamente?
Esa solución al rompecabezas abrió las puertas a un nuevo tipo de geometría de posición: la topología.

Puede sonar muy ajeno, pero muchos de nosotros nos beneficiamos de la topología todos los días.

Prácticamente todos los diseños de los mapas de metro del mundo se basan en principios topológicos, para comunicar claramente lo que los usuarios necesitan saber: cómo llegar a donde quieren ir.

Lo que necesitas saber es cómo llegar desde donde estás hasta donde quieres ir, así que -aunque te da una idea de las distancias- lo que importa es que veas claramente las conexiones.

Aunque la topología tuvo sus orígenes en los puentes de Königsberg, fue en manos del más famoso y respetado de los matemáticos de finales del siglo XIX, el francés Henri Poincaré, que el tema se convirtió en una nueva y poderosa manera de ver la forma.

A grandes rasgos
La principal idea detrás de la topología es que cuando se estudia un objeto, lo importante son sus propiedades, no el objeto en sí, y si dos objetos comparten las mismas propiedades, deben estudiarse, pues los resultados se escalarán a todos los objetos que comparten estas propiedades, llamados objetos homeomorfos.

Algunas personas se refieren a este importante campo de las matemáticas como 'geometría flexible' porque según él, dos formas son la misma si se puede transformar una en otra sin romperlas.

Entonces, por ejemplo, topológicamente una pelota de fútbol y una de rugby son equivalentes porque una puede transformarse en la otra.

Es por eso que se dice que un topólogo es una persona que no sabe cuál es la diferencia entre su taza de café y su dona.

Y es que, aunque suene raro, topológicamente una taza y una dona son iguales.

Pero, mientras que es posible deformar una dona para convertirla en una taza y viceversa, no hay manera de deformar una bola para transformarla en una dona porque no podemos crear el agujero de la dona sin cambiar las propiedades de la esfera.

El problema
Poincaré llegó a conocer todas las posibles superficies topológicas bidimensionales.

Además, desarrolló todas las formas posibles en las que podía envolver ese universo bidimensional plano.

Pero vivimos en un universo tridimensional, entonces, en 1904, se preguntó, ¿cuáles son todas las formas posibles que nuestro Universo puede tener?

Trató de encontrar la respuesta pero murió en 1912 sin lograrlo.

El francés Henri Poincaré (1854-1912), es considerado uno de los mejores matemáticos de todos los tiempos. Trabajó en mecánica celeste, topología, relatividad y es considerado el fundador de la teoría del caos. También planteó la Conjetura de Poincaré, en 1904, un problema de topología de difícil solución.

Ese problema topológico llevó a lo que se empezó a conocer como la conjetura (o hipótesis) de Poincaré, y quedó como un legado para futuras generaciones de matemáticos.

Simplemente no se pudo
Con el correr del siglo XX, legiones de matemáticos trataron de solucionar lo irresoluto.

70 años después de la muerte de Poincaré, la conjetura había sido resuelta para todas las otras dimensiones, menos para 3D.

A pesar de muchos intentos, el siglo terminó pero la incógnita persistió, y la conjetura de Poincaré fue incluida en la lista de los siete problemas matemáticos del milenio cuya resolución sería premiada con un millón de dólares por el Instituto Clay de Matemáticas de Massachusetts, EE.UU.

Dos años más tarde, el 11 del 11 de 2002, en el sitio web público arXiv apareció la primera de tres entregas de un escrito titulado "La fórmula de entropía para el flujo de Ricci y sus aplicaciones geométricas". En su totalidad, el texto se extendía por 39 páginas y estaba firmado por Grisha Perelman.

Poco ortodoxo
Grigori "Grisha" Perelman había estado trabajando en el tema en su natal San Petersburgo, a donde había regresado en 1995 tras vivir unos años en Estados Unidos porque, según le dijo a un colega, se dio cuenta de que en Rusia trabajaba mejor.

Grigori Perelman 2006, cuando el matemático ruso era el primero en la fila para recibir la medalla Fields de "Grisha" nació en 1955, cuando San Petersburgo se llamaba Leningrado y quedaba en la Unión Soviética.

No era un desconocido entre la comunidad matemática: en 1994 había probado la conjetura del Alma, la cual afirma que uno puede deducir las propiedades de un objeto matemático a partir de pequeñas regiones de estos objetos, llamados alma.

Después de eso, le ofrecieron cargos en algunas de las principales universidades del mundo, incluidas Stanford y Princeton, pero prefirió tomar un puesto de investigador en el Instituto Steklov en San Petersburgo, que pagaba menos de cien dólares al mes.

De su viaje a Estados Unidos se había llevado, según dijo, suficiente dinero para vivir bien.

Pero también se llevó una duda planteada por un matemático estadounidense al que admiraba: Richard Hamilton.

Flujos que no fluían
En 1982, Hamilton había publicado un artículo sobre una ecuación llamada el flujo de Ricci, con la cual sospechaba que se podía probar la conjetura de Poincaré.

Pero la tarea era extremadamente técnica y su ejecución, complicada.

En 1993, Perelman aceptó una beca de investigación Miller en la Universidad de California, Berkeley, y estando allá asistió a varias conferencias de Hamilton.

Al final de una de ellas, Hamilton le habló a Perelman sobre el mayor obstáculo que había encontrado al tratar de probar la conjetura, y el ruso le señaló que él había hecho un estudio que le podía servir para superarlo.

Pero Hamilton no le prestó atención.

Hamilton es conocido por haber descubierto el flujo de Ricci y por empezar un programa de investigación que resultó ser el suelo fértil en el que prosperarían la prueba de Perelman, y su genialidad.

Dos años más tarde, Perelman leyó un artículo de Hamilton en el que discutía algunas de sus ideas para probar la conjetura de Poincaré y notó que el matemático no había ningún progreso: estaba atascado.

Queriendo colaborar, Perelman le escribió una larga carta explicándole sus ideas, pero Hamilton nunca respondió.

Perelman tuvo que trabajar solo y lo que publicó en internet en 2002 fue el resultado de sus esfuerzos.

¡Lo logró!
La publicación de Perelman provocó un interés enorme entre los matemáticos.

Aunque ni en su título ni en ninguna parte aparecía una mención directa de Poincaré, cuatro años más tarde, emergió un consenso en la comunidad matemática: Perelman había probado la conjetura.

Para presentar detalladamente el logro de Perelman, los matemáticos John Morgan y Gang Tian necesitaron todo un libro, que aquí aparece sobre la obra "Topología ensamblada" del artista Douglas Ho en Quarry Bay Park.

Si cuatro años parecen una eternidad, ten en cuenta que estamos hablando de matemáticas.

A diferencia de otros campos del conocimiento, en los que las teorías siempre pueden ser revisadas, la prueba de un teorema es definitiva, así que no sorprende que los al menos dos equipos de expertos que la examinaron se tomaran todo el tiempo necesario para verificar que no había brechas o errores significativos.

Además, los artículos no contenían explicaciones o digresiones, y su prueba era tan compleja que hasta para los expertos era difícil de entender.

Por eso, analizarla tomaba tiempo y dedicación: la explicación detallada hecha por uno de esos equipos de expertos que examinaron lo que Perelman presentó en 39 páginas ocupó 473 páginas.

El silencio del genio
Después de más de un siglo de intentos frustrados, la conjetura de un brillante matemático había sido probada por otro igual de genial, aunque más excéntrico.

El teórico ruso recibió una lluvia de ofertas -de honores, premios en dinero en efectivo y fondos para investigación, así como lucrativos cargos académicos en las universidades más distinguidas del planeta y giras mundiales dando conferencias- que, según todos los informes, consideró profundamente ofensivas.

"La monetización del logro es el máximo insulto a las matemáticas", afirmó.

Consecuentemente, rechazó todo, incluida la medalla Fields, el equivalente matemático a un premio Nobel, por "sus contribuciones a la geometría y sus ideas revolucionarias" que lo llevaron a su prueba sobresaliente, un premio de la Sociedad Matemática Europea y el millón de dólares que el Instituto Clay quería darle por solucionar uno de los problemas del milenio.

"Si la prueba es correcta, no necesita otro tipo de reconocimiento", explicó.

Luego dejó de hablar con los medios, anunció que dejaba su profesión y se retiró para vivir con su madre como un semirecluso en un modesto apartamento, del que dicen que sólo sale a comprar víveres y de vez en cuando asiste a la ópera y a conciertos de música clásica.

"No me interesa el dinero ni la fama; no quiero estar en exhibición como un animal en un zoológico", declaró.

Mientras que muchos lo tacharon de "loco", particularmente por rechazar el millón de dólares -hay hasta un libro que alega que sufre de una forma de autismo-, hay quienes consideran noble el hecho de que le emocione demostrar teoremas y no ganar premios.

En cualquier caso, lo lamentable -para el avance científico, al menos- es que, además de alejarse del mundanal ruido, parece que efectivamente abandonó las matemáticas por completo.

¿O será que un día nos sorprenderá con otra brillante publicación en algún sitio de internet?

https://www.bbc.com/mundo/noticias-48434012

martes, 9 de marzo de 2021

_- Matemáticas: qué queda aún por descubrir, por qué son tan bellas y otras grandes interrogantes sobre esta fascinante ciencia

_-


Las matemáticas han sido increíblemente eficientes para describir la naturaleza.

Las matemáticas son algo absolutamente fascinante. Y están en todos lados: en las simetrías de los pétalos de las flores, en las conchas de los moluscos, en el patrón que siguen las manchas que tienen en la piel muchos animales, en los hexágonos de los copos de nieve, en la música, en los cristales minerales, en el arte… Vivimos rodeados de matemáticas.

El mexicano José Luis Aragón Vera es un apasionado de esta disciplina.
Director del Centro de Física Avanzada y Tecnología Aplicada de la Universidad Nacional Autónoma de México, este doctor en Física de Materiales por el Centro de Investigación Científica y de Estudios Superiores en Ensenada, Baja California, es experto en cristalografía matemática y en biomatemáticas.

BBC Mundo habló con él en el marco del Hay Festiva Digital Querétaro.

Galileo aseguró hace ya varios siglos que el universo está escrito en el lenguaje de las matemáticas. ¿Es así?

Yo creo que Galileo se dio cuenta de la gran efectividad que tienen las matemáticas para describir los fenómenos naturales, pero yo considero que las matemáticas son una creación nuestra, de la mente humana.

Pienso que las matemáticas son nuestra forma de ver la naturaleza, más que el lenguaje en el que la naturaleza está escrita. Y son creíblemente eficientes, eso sí que es cierto.

Entonces, ¿las matemáticas las inventamos, no las descubrimos?
Así es. Las inventamos nosotros, las creamos nosotros.

Históricamente, las matemáticas nacen por la necesidad de contar y de medir. Pero, poco a poco, comienzan a tener un cambio, y en el siglo XVII empiezan a orientarse más hacia las aplicaciones.

Newton, por ejemplo, inventa el cálculo diferencial integral pensando en un fenómeno físico como es la gravitación.

Y a finales del siglo XIX hay un cambio notable en las matemáticas: se convierten en un conjunto de objetos abstractos y de reglas para manejar esos objetos. Y esas reglas las inventan los matemáticos, son creación de ellos.

Pero si por ejemplo los pétalos de las flores y las manchas en la piel de algunos animalesse ordenan siguiendo reglas matemáticas, y tantas cosas que nos rodean responden a leyes matemáticas, ¿no podría ser que las matemáticas estuvieran allí y que nosotros las descubriéramos?

Eso nos podría llevar a una discusión filosófica. Mi opinión, y la de otros muchos, es que nosotros creamos las matemáticas. Y esa creación nuestra ha sido increíblemente eficiente para describir la naturaleza.

Hay un artículo que el físico Eugene Wigner escribió en los años 30 y cuyo título ya dice mucho: "La irrazonable efectividad de las matemáticas para describir las ciencias naturales".

En él, Wigner llega a la conclusión de que no se sabe por qué las matemáticas son tan eficientes. Es un artículo muy famoso que se ha escrito, reescrito, discutido… Pero sigue sin haber una conclusión.

Las matemáticas han sido increíblemente eficientes para describir la naturaleza.

¿Todo lo que nos rodea se puede explicar con el lenguaje matemático?

Muchas cosas sí: todo lo que son fenómenos naturales, también el arte, la música… No hay nada más matemático que la música.

Sin embargo, hay cuestiones como los fenómenos sociales, donde es muy difícil que las matemáticas funcionen, porque intervienen muchos factores.

Piense por ejemplo en predecir el comportamiento de la bolsa de valores: con que uno de los compradores se asuste y venda, se puede desencadenar una venta en cascada y que caiga la bolsa.

Hay modelos matemáticos que tratan de predecir esas cosas, pero son modelos que contienen en sí mismos esa impredecibilidad.

Las emociones son algo donde las matemáticas no suelen funcionar. ¿Es posible que en el futuro, con el desarrollo de la inteligencia artificial, las emociones se puedan formular con patrones matemáticos?

Es posible que sí. Con respecto a la inteligencia artificial, hay dos corrientes.

Por un lado, está la llamada inteligencia artificial fuerte, que argumenta que los procesos de pensamiento y los mecanismos de las emociones responden a algoritmos, y si son algoritmos una computadora los va a poder hacer, por muy complicados que sean.

Pero hay otra corriente, encabezada entre otros por Roger Penrose, un físico de Cambridge, que sostiene que no, que los pensamientos y los sentimientos no responden a un algoritmo, que hay fenómenos adicionales y que por ello una computadora nunca llegará a tener sentimientos como un ser humano.

Hay dos corrientes y mucho debate.
¿Y usted con cuál de esas dos corrientes se queda?
Con la que piensa que las computadoras nunca van a llegar a tener sentimientos.

¿Legará la inteligencia artificial a tener sentimientos o solamente entenderlos?

El mundo que tenemos hoy en día, ¿no existiría sin las matemáticas?
Si no hubiéramos sido capaces de inventar las matemáticas no tendríamos el nivel de progreso que tenemos ahora.

En estos momentos está pasando una cosa muy curiosa.
En el mundo moderno, con la alta tecnología que tenemos, los que están empezando a tomar el control son los matemáticos.

A las empresas les interesa mucho todo lo que son redes sociales y manejo de cantidades enormes de datos, porque a través de las búsquedas en internet y de las ventas pueden saber lo que nos gusta, cuáles son nuestros patrones de compra y así saben qué vendernos.

Incluso a través de las matemáticas se puede llegar a influir en las opiniones: las noticias falsas, las fake news, son creadas por algoritmos matemáticos muy complejos que imitan la manera de escribir de las personas.

Y detrás de todo eso está el conocimiento matemático, y los matemáticos están cada vez más cotizados.

Si miramos atrás, vemos que cuando llegó el desarrollo de la energía nuclear los profesionales más cotizados eran los físicos. Después llegó el boom de la ingeniería genética, y los más cotizados pasaron a ser los biólogos. Y ahora son los matemáticos.

Arte abstracto Getty
Ha habido artistas muy famosos que han tenido mucho gusto por las matemáticas y han metido en sus obras de arte conceptos matemáticos"

Si no hubiéramos inventado las matemáticas, ¿cómo sería el mundo en estos momentos?

Pues seguiríamos teniendo creencias religiosas para explicar lo que vemos, no tendríamos grandes teorías sobre cómo funcionan las cosas.

Sin las matemáticas no podríamos explicar el mundo natural como lo hemos explicado hasta ahora.

¿Las matemáticas son la perfección? Se lo pregunto porque en la naturaleza, cuando hay patrones matemáticos generan algo que parece perfecto…

Lo que hay detrás de las matemáticas siempre es el rigor lógico, y el rigor lógico siempre da esa sensación, no sólo de perfección sino también estética. Es bello, muy bello. Por eso, las matemáticas y el arte viven en concubinato.

El arte es algo que nace de las emociones, ¿dónde están las matemáticas en el arte?

En las artes plásticas hay geometría. La geometría se cree que nace en Babilonia en el año 3000 a.C., aunque algunas teorías dicen que nació mucho antes, desde que los seres humanos tuvieron la necesidad de adornar sus cuerpos para ritos religiosos o de cortejo.

Si aceptamos eso, ahí ya se ve que la geometría y la estética están muy relacionadas.

Pero yo creo que los primeros en darse cuenta de la relación entre la geometría y el arte son los griegos.

La proporción áurea, por ejemplo, es un número irracional que vale aproximadamente 1,618 y que tiene propiedades matemáticas muy notables.

Proporción áurea 
FUENTE DE LA IMAGEN,GETTY IMAGES  

La proporción áurea también es llamada la "divina proporción".
Los griegos fueron los primeros que se dieron cuenta de que con ella se pueden formar figuras geométricas muy placenteras.

Por qué son placenteras no se sabe, pero lo son: si, por ejemplo, formamos un rectángulo en el que un lado vale 1 y el otro la proporción áurea, 1,618, y otros muchos rectángulos de distintas medidas y se los enseñamos a niños y adultos, casi siempre se quedan con el que tiene la proporción áurea.

El escultor y arquitecto griego Fidias utilizó la proporción áurea para el Partenón, y Leonardo Da Vinci ilustró un libro muy famoso de Luca Pacioli sobre "la divina proporción", que es como llamaba a la proporción áurea.

Ha habido muchos artistas y creadores que la han utilizado, hasta llegar al arquitecto Le Corbusier: su edificio de la ONU en Nueva York tiene justo esas proporciones.

¿A los artistas les gustan entonces las matemáticas?

Sí. Ha habido artistas muy famosos que han tenido mucho gusto por las matemáticas y han metido en sus obras de arte conceptos matemáticos más avanzados: Durero, Man Ray, Kandinsky, Escher…

Siguiendo con el tema de la perfección… Los matemáticos hablan de círculos y de triángulos perfectos, de números compuestos de unidades perfectamente iguales entre sí, de números irracionales que no tienen fin… Pero nada de eso existe en la realidad, ¿verdad?

Tiene toda la razón. La proporción áurea, por volver a ella, es exactamente 1+√5/2, y ese es un número irracional que vale 1,618034… etcétera, etcétera.

Obviamente, nunca vamos a tener un rectángulo con esa proporción exactamente, lo que se obtiene una proporción aproximada. Pero eso funciona muy bien, la ciencia también se basa en aproximaciones que funcionan.

Cuando Newton propuso la teoría de la gravitación y que la Tierra atraía a la Luna calculó cuál sería la órbita alrededor de la Tierra suponiendo que ambas son esferas, cuando en realidad no lo son.

Pero si hubiera hecho los cálculos teniendo en cuenta que una tiene forma de naranja y la otra está aplastada por un lado nunca hubiera llegado a su teoría.

Todo se basa en aproximaciones. Las matemáticas dan cantidades exactas y perfectas, pero al aplicarlas se hace con aproximaciones que funcionan muy bien.

Newton se basó en las matemáticas, pero tuvo que hacer aproximaciones para generar su teoría de la gravedad.

¿Qué nos queda por saber del mundo de las matemáticas?

Nos quedan muchas cosas, pero es muy difícil predecir qué nuevas reglas se van a proponer, qué nuevas áreas se van a crear.

¿A usted qué le gustaría descubrir?

El gran reto que hay ahora es desarrollar unas matemáticas que puedan explicarnos cosas como el caos.

Hay fenómenos naturales sobre los que no podemos hacer predicciones más allá de tres o cuatro días, como por ejemplo el clima. Y lo que no sabemos es si la naturaleza en realidad es así o si no tenemos las matemáticas adecuadas para hacer mejores predicciones.

Muchos fenómenos naturales no son lineales, y aún no hay matemáticas para tratarlos. Me gustaría descubrir eso: unas matemáticas para los fenómenos no lineales.

Hubo un matemático ruso muy famoso, Andrei Kolmogorov, que estudió en concreto la turbulencia, un fenómeno no lineal muy complejo, hasta el punto de que hay una universidad en Canadá que lo considera uno de los problemas del siglo y ofrece un millón de dólares a quien lo resuelva.

Kolmogorov atacó esos problemas, pero se dio cuenta de que no podía llegar muy lejos con las matemáticas que había, y dijo que hacía falta el golpe de un genio, crear las matemáticas adecuadas para esos fenómenos tan complicados.

Andrei Kolmogorov concluyó que con las matemáticas existentes no podía resolver algunos fenómenos no lineales.
 
¿Los matemáticos tienen otra manera de pensar?
Yo creo que sí.
Cuando doy clases de matemáticas yo siempre le insisto a mis estudiantes que a mí no me importa mucho si al rato no se acuerdan de la fórmula tal, o de cómo se diagonaliza una matriz o qué es la independencia lineal.

Mi objetivo es que aprendan a pensar como piensan los matemáticos: con consistencia lógica, encadenando razonamientos, buscando siempre consecuencias a través de la lógica, etc.

¿Y esa forma particular de pensar la trasladan a todas las esferas de la vida?
Sí. Hay en ese sentido una anécdota muy conocida: durante la II Guerra Mundial querían blindar los aviones para evitar que les hicieran daño al dispararles. Pero blindar un avión entero es imposible, pesaría mucho.

Un grupo de ingenieros, generales y dos matemáticos se pusieron a pensar y vieron que la mayoría de los aviones tenían más impactos en el fuselaje, así que pensaron que lo mejor sería blindar esa parte.

Pero los matemáticos preguntaron dónde recibían menos impactos los aviones atacados. Les respondieron que en el motor, y decidieron que eso era lo que había que blindar, pues si los aviones mostraban pocos impactos en el motor, significaba que los que recibían disparos ahí no habían podido volver.

Esa es una manera de pensar matemática.

¿Las matemáticas son entonces una forma de vivir?

Son una forma de pensar, y eso evidentemente impacta también en tu forma de vivir.

Arte abstracto Getty
Hay muchos modelos matemáticos que han intentado predecir el comportamiento de la pandemia… creo que son muy importantes, aunque también creo que han sido bastante ignorados"

¿Y qué tal se llevan las matemáticas con las emociones?

Suelen tener una relación muy complicada. Las emociones son poco racionales para la manera de ver las cosas de los matemáticos. Muchos matemáticos muy famosos han tenido un comportamiento complicado.

El último conocido es Grigori Perelman, que logró resolver la famosa conjetura de Poincaré, uno de los problemas del milenio.

Había una recompensa de un millón de dólares a quien la resolviera, y también le ofrecieron la medalla Fields (el más importante galardón que puede recibir un matemático), y no quiso ninguna de las dos cosas. Se quedó en su casa tocando el violín.

Hoy en día hay más mujeres destacándose en las matemáticas.

¿Qué hay de matemáticas en esta pandemia que estamos viviendo?

Muchísimo. Hay muchos modelos matemáticos que han intentado predecir el comportamiento de la pandemia, que proponen modelos sobre cómo evitar su propagación…

Hay muchos modelos y yo creo que son muy importantes, aunque también creo que han sido bastante ignorados. 

domingo, 7 de junio de 2020

Una estudiante de doctorado resuelve un problema abierto desde hace décadas. Lisa Piccirillo encuentra la solución a un famoso problema en teoría de nudos.

El nudo de Conway (derecha) y el nudo de Kinoshita-Terasaka (izquierda) son mutantes, es decir, uno puede obtenerse a partir del otro girando el círculo rojo.


El nudo de Conway (derecha) y el nudo de Kinoshita-Terasaka (izquierda) son mutantes, es decir, uno puede obtenerse a partir del otro girando el círculo rojo.

Las matemáticas cuentan con múltiples problemas que llevan años abiertos. Algunos se resisten y cada pequeño avance es celebrado en la comunidad como un paso que acerca a su resolución, habitualmente compleja. Otros están ahí, esperando que llegue la persona que los mire desde una nueva perspectiva que haga que, de pronto, todos los velos caigan y uno quede sorprendido ante la simplicidad de la solución.

Este es el caso de Lisa Piccirillo, que resolvió un importante problema en teoría de nudos, abierto hace más de 50 años, siendo estudiante de doctorado en la Universidad de Texas en Austin. Su resultado, que recientemente ha sido publicado en la prestigiosa revista Annals of Mathematics, ha despertado un gran interés en la comunidad matemática.

El entusiasmo de esta acogida ha sorprendido a la propia joven, que reconoce no haber sido consciente en un primer momento del impacto que tendría su trabajo.

Piccirillo ha determinado que el llamado nudo de Conway, introducido por John Horton Conway (recientemente fallecido a causa de la Covid19), no tiene la propiedad de ser slice.

La pregunta fundamental que se intenta responder es si, dados dos nudos, es posible obtener uno de ellos a partir de deformaciones del otro. En caso de que sea posible, los nudos son equivalentes.

Pero empecemos por el principio: en matemáticas, un nudo sería una cuerda atada en la se han pegado los extremos entre sí. La teoría de nudos estudia las transformaciones que pueden hacerse a esa cuerda estirándola, retorciéndola, doblándola… sin llegar a cortarla. La pregunta fundamental que se intenta responder es si, dados dos nudos, es posible obtener uno de ellos a partir de deformaciones del otro. En caso de que sea posible, los nudos son equivalentes.

Para resolver estas cuestiones se emplean los invariantes de nudos, que son funciones que asignan un valor a cada nudo. Si un determinado invariante asigna valores diferentes a dos nudos, entonces no es posible deformar un nudo en el otro, es decir, no son nudos equivalentes.

Los invariantes permiten estudiar las propiedades de los nudos. El problema resuelto por Piccirillo se centra en la propiedad de un nudo de ser slice. Para definir este concepto tenemos que imaginar el nudo en un espacio de cuatro dimensiones. Así, un nudo es slice si es el borde de un disco en este espacio. No es sencillo formarse una idea intuitiva y precisamente por esto no es fácil determinar, en general, si un nudo es slice o no.

Afortunadamente, los invariantes pueden ser útiles en esta tarea, ya que proporcionan obstrucciones para que un nudo sea slice. Así, hasta el momento había sido posible determinar si 2977 de los 2978 nudos con menos de 13 cruces tienen la propiedad de ser slice o no. Todos menos un nudo: el nudo de Conway, de 11 cruces.

Piccirillo supo de la existencia de este problema durante un congreso en el verano de 2018. En sus propias palabras, lo tomó como un pasatiempo Piccirillo supo de la existencia de este problema durante un congreso en el verano de 2018. En sus propias palabras, lo tomó como un pasatiempo en el que aplicar algunas de las técnicas que había desarrollado como estudiante de doctorado. En poco menos de una semana consiguió dar respuesta a la pregunta: el nudo de Conway no es slice.

La prueba de su resultado es sorprendente por la combinación de originalidad y simplicidad (¡ojo con no confundir simplicidad con sencillez!). Su éxito radica en el uso de un invariante moderno para atacar un problema clásico: el “invariante s”, definido en 2010 por Jacob Rasmussen a partir de otro invariante conocido como homología de Khovanov, y en la idea de traza, un espacio de dimensión cuatro que puede asociarse a cada nudo. Si dos nudos tienen trazas equivalentes entonces o bien ambos tienen la propiedad de ser slice, o bien ninguno de los dos la tiene. La idea de Piccirillo consiste en construir un nudo cuya traza es equivalente a la traza del nudo de Conway, y usar el invariante s para comprobar que el primero no es slice.

Más allá de completar la clasificación de nudos slice de menos de 13 cruces, la importancia de este resultado se esconde en algo más sutil: en el estudio de la clasificación de nudos, es fundamental determinar qué propiedades se preservan por mutación. El nudo de Conway es mutante de otro nudo con nombre propio: el nudo de Kinoshita-Terasaka (ver Figura al margen), que sí es slice. Así, el trabajo de Piccirillo proporciona el primer ejemplo de un nudo no slice (que sí es topológicamente slice) cuyo mutante sí lo es.

Marithania Silvero es profesora ayudante, doctora de la Universidad de Huelva y miembro del Instituto de Matemáticas de la Universidad de Sevilla (IMUS).

Café y Teoremas es una sección dedicada a las matemáticas y al entorno en el que se crean, coordinado por el Instituto de Ciencias Matemáticas (ICMAT), en la que los investigadores y miembros del centro describen los últimos avances de esta disciplina, comparten puntos de encuentro entre las matemáticas y otras expresiones sociales y culturales y recuerdan a quienes marcaron su desarrollo y supieron transformar café en teoremas. El nombre evoca la definición del matemático húngaro Alfred Rényi: “Un matemático es una máquina que transforma café en teoremas”.

Edición y coordinación: Ágata A. Timón García-Longoria (ICMAT)

El País.

https://elpais.com/ciencia/2020-05-29/una-estudiante-de-doctorado-resuelve-un-problema-abierto-desde-hace-decadas.html

https://elpais.com/ciencia/cafe_y_teoremas/ 

Más en BBC aquí, https://www.bbc.com/mundo/noticias-52992886

Grigori Perelman, el genio matemático que resolvió uno de los 7 problemas del milenio y se retiró del mundo