Mostrando entradas con la etiqueta Millikan. Mostrar todas las entradas
Mostrando entradas con la etiqueta Millikan. Mostrar todas las entradas

domingo, 10 de enero de 2021

_- Física cuántica: qué es la dualidad partícula-onda de la luz y cómo su descubrimiento revolucionó la ciencia

_- Albert Einstein puede ser famoso por su teoría de la relatividad general, pero no fue esta la que le dio el único Premio Nobel de su carrera.

El físico obtuvo el galardón por un descubrimiento que hizo cuando tenía tan solo 26 años.

Se trata de la ley del efecto fotoeléctrico que publicó en 1905 y que planteaba que la luz tenía una propiedad tan contraintuitiva que llevaría a cuestionar la propia noción de la realidad.

No en vano terminó dando origen a la física o mecánica cuántica, una rama que estudia la naturaleza a escala atómica y subatómica, o sea, el mundo de lo ultrapequeño y sus leyes, que son muy distintas a aquellas que gobiernan al mundo que podemos ver.

"La mecánica cuántica marcó una ruptura entre la física clásica y la moderna", explica a BBC Mundo la física colombiana Nelly Yolanda Céspedes Guevara.

"Fue toda una revolución", agregó la también doctora en educación y docente de la Fundación Universitaria del Área Andina, de Colombia.

Para ello, Einstein hizo lo que mejor sabía hacer: romper con ideas largamente establecidas y aceptadas.

"No podemos solucionar nuestros problemas con las mismas líneas de pensamiento que usamos cuando los creamos", dijo el físico alguna vez.

La ley del efecto fotoeléctrico no fue la excepción.

¿Partícula u onda?
En la física, las ondas y las partículas son tan distintas que cada una obedece a sus propias reglas matemáticas.

Einstein ganó el Nobel de Física en 1921 por la ley del efecto fotoeléctrico, que descubrió con 26 años.
"La partícula es todo aquello que tú puedes cuantificar y que en teoría puedes agarrar o tocar", dice Céspedes.

Imagínalo como una piedra: la puedes tomar con tu mano, lanzar contra una pared y, luego de verla rebotar, incluso puedes señalar el lugar preciso donde cayó.

En cambio, explica la física, "la onda es capaz de atravesar de un lugar a otro y no la puedes coger".

Sería como tirar la piedra en un cubo con agua y tratar de agarrar las pequeñas olas que se generan: pasarán por los costados de tu mano, por arriba y entre tus dedos, pero no podrás atraparlas.

Tampoco serás capaz de decir exactamente dónde están esas olas, más que haciendo un gesto aproximado que englobe toda la onda expansiva provocada por la piedra.

Hasta la llegada del siglo XX, el consenso científico indicaba que, por ejemplo, la luz era una onda y el electrón, una partícula.

Pero todo estaba a punto de cambiar.
Según la ley del efecto fotoeléctrico de Einstein, la luz podría generar electricidad solo si, bajo determinadas circunstancias, se comportaba como una suerte de partícula.

En otras palabras, planteó que "la luz no podía ser solo una onda", explica Céspedes.

Para llegar a esa conclusión, agrega, Einstein se basó en ideas previas de físicos como el alemán Max Planck.

El "revolucionario renuente"
En el año 1900, Planck ya había descubierto que había un problema con la luz como onda.

Lejos de ser un flujo constante, afirmó, la luz viajaba en "paquetes" de una gran "cuantía" de energía, concepto de donde luego derivaría el nombre de física cuántica.

Planck fue galardonado en 1918 con el Nobel "en reconocimiento de los servicios que prestó al avance de la física por su descubrimiento de los cuantos de energía".

"El concepto de Planck de cuantos energéticos", explica la Enciclopedia Británica, "entraba en conflicto con toda la esencia de la física teórica pasada".

Y si bien sus investigaciones no le dejaban otra opción más que derribar el conocimiento previo establecido y hasta ganó un Nobel por "descubrir la energía cuanta", Planck fue un "revolucionario renuente", afirma la enciclopedia.

Tal es así que distintos historiadores de la ciencia como el famoso Thomas Kuhn se han negado a darle el título de padre de la física cuántica.

Según argumentan, a partir de sus trabajos, Planck podría haber inferido que la luz se comportaba como una partícula, sin embargo, no lo vio o no se atrevió a afirmarlo y provocar un cambio de paradigma.
Para eso tendría que llegar Einstein.

Ni una cosa ni la otra
En 1905, Einstein había argumentado que, a veces, la luz parecía consistir en "cuantos" (lo que hoy son los fotones) y, cuatro años más tarde, introdujo la dualidad onda-partícula en la física.

Es decir que la luz no era una onda o una partícula: era ambas cosas. Einstein estaba pensando lo impensable.

"La hipótesis de Einstein de los cuantos de luz no fue tomada en serio por los físicos adeptos a las matemáticas durante poco más de 15 años", escribió el historiador de la ciencia Bruce R. Wheaton.

"Incluso (el físico estadounidense) R. A. Millikan, quien en 1914-16 proporcionó la primera evidencia inequívoca de la sorprendente ley de emisión fotoeléctrica de Einstein, siguió también inequívocamente desdeñando la hipótesis de la partícula de luz de la cual se había derivado esa ley", agregó.

Es más: Millikan, quien fue discípulo de Planck, terminaría ganando un Nobel "por su trabajo en la carga elemental de la electricidad y en el efecto fotoeléctrico".

Para desdén de muchos de estos físicos, la dualidad onda-partícula no se quedó en la luz, sino que se amplió a la materia a escala atómica.

La física moderna
En 1924, el físico francés Louis de Broglie propuso una osada analogía: si la luz, que se creía que era una onda, tenía comportamiento de partícula bajo ciertas condiciones, entonces partículas como el electrón también cumplían con esa dualidad.

"Cuando De Broglie propuso esta idea, no había evidencia experimental alguna" que la respaldara, explica la Enciclopedia Británica.

"La sugerencia de De Broglie, su principal contribución a la física, constituyó un triunfo de la intuición", agrega.

Es que, tres años después, la naturaleza ondulatoria de los electrones era demostrada empíricamente por el físico británico George Paget Thomson.

Lo increíble es que así como Thomson obtuvo el Premio Nobel por demostrar que los electrones son ondas, su padre, Joseph John Thomson, lo había ganado décadas antes por probar que los electrones son partículas.

Y sí, De Broglie también recibió el Nobel.
"La idea de Louis de Broglie, que condujo a la formulación más completa del dualismo onda-partícula fue el último acto en una serie de intentos preliminares por parte de los físicos para resolver las paradojas que habían surgido en las teorías de la radiación", escribió Wheaton.

En esa búsqueda, dieron la estocada final al determinismo en la física y provocaron una revolución en el conocimiento que incluso trascendió a la ciencia.

En palabras de Wheaton: "La teoría de partículas de luz de Einstein ha demostrado ser un componente fundamental de la física moderna, quizás la característica que más la distingue de la física newtoniana de los 300 años anteriores".

jueves, 2 de agosto de 2012

Física, los 10 experimentos más bellos.

Mecánica
2. Experimento de Galileo (1564-1642) sobre la caí­da de libre de los cuerpos *
6. El experimento de torsión de la barra de Cavendish (1731-1810) para calcular la constante, g, de gravitación universal
7. Medida de la circunferencia de la Tierra por Eratóstenes * (276-194 a. C.)
8. Experimento de Galileo con bolas rodantes sobre planos inclinados *
10. El péndulo de Foucault * (1819-1868) y el movimiento de la Tierra

Cuántica
1. Difracción de electrones mediante doble rendija
5. Experimento de Young (1773-1829) sobre el carácter ondulatorio de la luz, la interferencia de la luz *
9. El descubrimiento del núcleo atómico por Rutherford (1871-1937)

Óptica
4. Descomposición de la luz del Sol mediante un prisma por Newton * (1642-1727)



Electricidad y electromagnetismo
3. El experimento de la gota de aceite de Millikan (1868-1953) para calcular la unidad de carga eléctrica
(*) Los asteriscos indican aquellos experimentos relativamente fáciles de reproducir.

La noticia es esta:
 Astroseti ha publicado Los 10 experimentos de ciencia más bonitos, una traducción de Science’s 10 Most Beautiful Experiments, que a su vez se basa en el artí­culo de George Johnson Here They Are, Science’s 10 Most Beautiful Experiments, publicado en 2002 en el New York Times.
Los números indican el orden de clasificación que resultó de la encuesta.
El número 11 resultó el principio de Arquímedes,

 Esta selección fue realizada por Robert P. Crease, miembro del departamento de filosofí­a de la Stony Brook University e historiador del Brookhaven National Laboratory, a partir de una encuesta hecha entre fí­sicos, y se caracteriza por contener experimentos relativamente sencillos que en su momento revelaron cosas muy importantes. En España editado por edit. Crítica "El prisma y el péndulo. Los diez experimentos más bellos de la ciencia.".

Vídeo. Nuevo record mundial de surf en Nazaret, Portugal.