_- Albert Einstein puede ser famoso por su teoría de la relatividad general, pero no fue esta la que le dio el único Premio Nobel de su carrera.
El físico obtuvo el galardón por un descubrimiento que hizo cuando tenía tan solo 26 años.
Se trata de la ley del efecto fotoeléctrico que publicó en 1905 y que planteaba que la luz tenía una propiedad tan contraintuitiva que llevaría a cuestionar la propia noción de la realidad.
No en vano terminó dando origen a la física o mecánica cuántica, una rama que estudia la naturaleza a escala atómica y subatómica, o sea, el mundo de lo ultrapequeño y sus leyes, que son muy distintas a aquellas que gobiernan al mundo que podemos ver.
"La mecánica cuántica marcó una ruptura entre la física clásica y la moderna", explica a BBC Mundo la física colombiana Nelly Yolanda Céspedes Guevara.
"Fue toda una revolución", agregó la también doctora en educación y docente de la Fundación Universitaria del Área Andina, de Colombia.
Para ello, Einstein hizo lo que mejor sabía hacer: romper con ideas largamente establecidas y aceptadas.
"No podemos solucionar nuestros problemas con las mismas líneas de pensamiento que usamos cuando los creamos", dijo el físico alguna vez.
La ley del efecto fotoeléctrico no fue la excepción.
¿Partícula u onda?
En la física, las ondas y las partículas son tan distintas que cada una obedece a sus propias reglas matemáticas.
Einstein ganó el Nobel de Física en 1921 por la ley del efecto fotoeléctrico, que descubrió con 26 años.
"La partícula es todo aquello que tú puedes cuantificar y que en teoría puedes agarrar o tocar", dice Céspedes.
Imagínalo como una piedra: la puedes tomar con tu mano, lanzar contra una pared y, luego de verla rebotar, incluso puedes señalar el lugar preciso donde cayó.
En cambio, explica la física, "la onda es capaz de atravesar de un lugar a otro y no la puedes coger".
Sería como tirar la piedra en un cubo con agua y tratar de agarrar las pequeñas olas que se generan: pasarán por los costados de tu mano, por arriba y entre tus dedos, pero no podrás atraparlas.
Tampoco serás capaz de decir exactamente dónde están esas olas, más que haciendo un gesto aproximado que englobe toda la onda expansiva provocada por la piedra.
Hasta la llegada del siglo XX, el consenso científico indicaba que, por ejemplo, la luz era una onda y el electrón, una partícula.
Pero todo estaba a punto de cambiar.
Según la ley del efecto fotoeléctrico de Einstein, la luz podría generar electricidad solo si, bajo determinadas circunstancias, se comportaba como una suerte de partícula.
En otras palabras, planteó que "la luz no podía ser solo una onda", explica Céspedes.
Para llegar a esa conclusión, agrega, Einstein se basó en ideas previas de físicos como el alemán Max Planck.
El "revolucionario renuente"
En el año 1900, Planck ya había descubierto que había un problema con la luz como onda.
Lejos de ser un flujo constante, afirmó, la luz viajaba en "paquetes" de una gran "cuantía" de energía, concepto de donde luego derivaría el nombre de física cuántica.
Planck fue galardonado en 1918 con el Nobel "en reconocimiento de los servicios que prestó al avance de la física por su descubrimiento de los cuantos de energía".
"El concepto de Planck de cuantos energéticos", explica la Enciclopedia Británica, "entraba en conflicto con toda la esencia de la física teórica pasada".
Y si bien sus investigaciones no le dejaban otra opción más que derribar el conocimiento previo establecido y hasta ganó un Nobel por "descubrir la energía cuanta", Planck fue un "revolucionario renuente", afirma la enciclopedia.
Tal es así que distintos historiadores de la ciencia como el famoso Thomas Kuhn se han negado a darle el título de padre de la física cuántica.
Según argumentan, a partir de sus trabajos, Planck podría haber inferido que la luz se comportaba como una partícula, sin embargo, no lo vio o no se atrevió a afirmarlo y provocar un cambio de paradigma.
Para eso tendría que llegar Einstein.
Ni una cosa ni la otra
En 1905, Einstein había argumentado que, a veces, la luz parecía consistir en "cuantos" (lo que hoy son los fotones) y, cuatro años más tarde, introdujo la dualidad onda-partícula en la física.
Es decir que la luz no era una onda o una partícula: era ambas cosas. Einstein estaba pensando lo impensable.
"La hipótesis de Einstein de los cuantos de luz no fue tomada en serio por los físicos adeptos a las matemáticas durante poco más de 15 años", escribió el historiador de la ciencia Bruce R. Wheaton.
"Incluso (el físico estadounidense) R. A. Millikan, quien en 1914-16 proporcionó la primera evidencia inequívoca de la sorprendente ley de emisión fotoeléctrica de Einstein, siguió también inequívocamente desdeñando la hipótesis de la partícula de luz de la cual se había derivado esa ley", agregó.
Es más: Millikan, quien fue discípulo de Planck, terminaría ganando un Nobel "por su trabajo en la carga elemental de la electricidad y en el efecto fotoeléctrico".
Para desdén de muchos de estos físicos, la dualidad onda-partícula no se quedó en la luz, sino que se amplió a la materia a escala atómica.
La física moderna
En 1924, el físico francés Louis de Broglie propuso una osada analogía: si la luz, que se creía que era una onda, tenía comportamiento de partícula bajo ciertas condiciones, entonces partículas como el electrón también cumplían con esa dualidad.
"Cuando De Broglie propuso esta idea, no había evidencia experimental alguna" que la respaldara, explica la Enciclopedia Británica.
"La sugerencia de De Broglie, su principal contribución a la física, constituyó un triunfo de la intuición", agrega.
Es que, tres años después, la naturaleza ondulatoria de los electrones era demostrada empíricamente por el físico británico George Paget Thomson.
Lo increíble es que así como Thomson obtuvo el Premio Nobel por demostrar que los electrones son ondas, su padre, Joseph John Thomson, lo había ganado décadas antes por probar que los electrones son partículas.
Y sí, De Broglie también recibió el Nobel.
"La idea de Louis de Broglie, que condujo a la formulación más completa del dualismo onda-partícula fue el último acto en una serie de intentos preliminares por parte de los físicos para resolver las paradojas que habían surgido en las teorías de la radiación", escribió Wheaton.
En esa búsqueda, dieron la estocada final al determinismo en la física y provocaron una revolución en el conocimiento que incluso trascendió a la ciencia.
En palabras de Wheaton: "La teoría de partículas de luz de Einstein ha demostrado ser un componente fundamental de la física moderna, quizás la característica que más la distingue de la física newtoniana de los 300 años anteriores".
Mostrando entradas con la etiqueta Thomson. Mostrar todas las entradas
Mostrando entradas con la etiqueta Thomson. Mostrar todas las entradas
domingo, 10 de enero de 2021
_- Física cuántica: qué es la dualidad partícula-onda de la luz y cómo su descubrimiento revolucionó la ciencia
Etiquetas:
cuantos de luz,
efecto fotoelétrico,
Einstein,
física cuántica,
La luz,
Louis de Broglie,
mecánica cuántica,
Millikan,
partícula y onda,
Planck,
Thomson
sábado, 29 de junio de 2013
Se cumplen 100 años del nacimiento de la Física Cuántica.
La revolución de la física de hace un siglo se ha convertido en recurso para las nuevas tecnologías.
Niels Bohr escribió sus tres artículos transgresores en 1913
“El conocimiento verdadero y profundo es el de los átomos y el vacío, pues son ellos los que generan las apariencias, lo que percibimos, lo superficial”, decía Demócrito hace 2.400 años. Sin embargo, el átomo se empezó a entender solo hace 100 años, cuando fue protagonista de una de las mayores revoluciones científicas: la física cuántica. Toda la materia que nos envuelve está hecha de átomos; nuestro cuerpo contiene tantos átomos como estrellas se cree que hay en el universo. Hace un siglo, los físicos se enfrentaron al reto de descifrar la pieza fundamental que constituye la materia del universo.
A finales del siglo XIX, los átomos empezaron a dar algunas pistas sobre su naturaleza. Se observó que cuando un átomo acumula un exceso de energía emite luz de solo ciertos colores (frecuencias). En analogía con la música, el átomo sería como un piano que solo puede emitir los sonidos permitidos por sus teclas, pero no sonidos de una frecuencia intermedia, como lo puede hacer un violín. En 1897, J. J. Thomson demostró experimentalmente que el átomo no era indivisible, como dice su etimología, sino que contenía partículas ligerísimas de carga negativa, los electrones. Thomson modeló el átomo como una masa de carga positiva que tiene incrustados los electrones, como si de un bizcocho de pasas se tratara. Junto a su equipo calculó si la vibración de las pasas podía explicar la luz emitida por los átomos. No tuvo éxito, muy a su pesar.
Poco después, en 1911, Ernest Rutherford demostró que la masa de carga positiva del átomo está concentrada en su centro, descubriendo así su núcleo. Él modeló el átomo a imagen de un sistema planetario en el que los electrones son los planetas, y el núcleo el Sol. Pero ese modelo estaba en conflicto con un fenómeno básico en física: cuando la trayectoria de una partícula cargada, como el electrón, se curva, esta pierde energía mediante la emisión de radiación. Es como si la partícula derrapara al girar y perdiera velocidad. Un cálculo sencillo demuestra que los electrones pierden toda su energía, y en consecuencia el átomo debería colapsarse, en 0,00000001 segundos. Realmente no es así; de hecho los átomos que conforman nuestro cuerpo son los mismos que se crearon en el interior de estrellas hace miles de millones de años.
En 1900, el físico alemán Max Planck se enfrentaba a un fenómeno que estaba en total desacuerdo con la física clásica: el perfil de la gráfica de la radiación emitida por objetos a cierta temperatura. Planck propuso una solución desesperada, pero increíblemente acertada: la radiación no se emitía de forma continua, sino a través de pequeños paquetes de energía, los famosos cuantos de Planck. Y en 1905, Albert Einstein utilizó este hallazgo para explicar el efecto fotoeléctrico; fue su annus mirabilis en que conmocionó al mundo de la física con su teoría de la relatividad especial.
Eran tiempos en que el mar de la ciencia estaba muy revuelto; parecía que los pilares fundamentales de la física se derrumbaban. Frente a estas situaciones hay dos tipos de físicos, los conservadores, que se sienten angustiados, y los transgresores que se miden contra las olas y quieren que el mar no se calme. El físico danés Niels Bohr era de los valientes. En 1911 y con solo 26 años, Bohr fue a Inglaterra a trabajar, primero con el grupo de Thomson y después con Rutherford, que acababa de descubrir el núcleo del átomo. Bohr se preguntó: ¿cómo podemos explicar con la física clásica que un átomo emita luz en pequeños paquetes de energía?
En 1913, Bohr respondió a esta pregunta en tres artículos que describían su modelo del átomo, del que este año se celebra su centenario. El primero de ellos contenía la idea más transgresora: la energía de los electrones que orbitan alrededor del núcleo también viene dada en paquetes, es decir, está cuantizada. Con este supuesto y, dado que la energía del electrón depende de la distancia a la que orbita del núcleo, concluyó que el electrón solo puede orbitar a determinadas distancias, o niveles, del núcleo. Cuando un átomo gana energía, el electrón se desplaza hacia las órbitas más alejadas, y al perderla, salta de órbita en órbita, como si bajara los peldaños de una escalera. Estos saltos, que pueden ser de uno o varios escalones, emiten luz, fotones, cuya frecuencia es proporcional a la diferencia de energía que existe entre los dos niveles orbitales.
De esta manera, tan sencilla, Bohr consiguió explicar muchos de los experimentos sobre la emisión de luz de los átomos. No le importaba que los electrones derraparan al girar y perdieran energía, simplemente postuló que eso no sucedía en estas órbitas, ya que estas eran estables por alguna razón desconocida. El modelo, pese a sus limitaciones, explicaba muchos resultados de las líneas espectrales de los gases y del orden de los elementos en la tabla periódica. Hoy sabemos que el átomo de Bohr es demasiado simple, pero introduce rasgos importantes de la física atómica. Aunque al visualizar el mundo cuántico hay que ser siempre precavido, en el caso del átomo es más correcto imaginar los electrones, no como partículas, sino como nubes difusas alrededor del núcleo, cuya densidad en cada punto representa la probabilidad de encontrar el electrón en ese sitio.
Bohr fue un científico emblemático que aglutinó en su instituto a los mejores físicos cuánticos. Famosas fueron sus discusiones con Einstein sobre la interpretación de la física cuántica. En desacuerdo con él, Bohr creía que la naturaleza, en su expresión más íntima, está indeterminada, o sea, que sí juega a los dados. Y acertó.
El científico danés mantuvo famosos debates con Einstein sobre esta materia
Hoy, en numerosos laboratorios de todo el mundo, miles de físicos y físicas investigan y experimentan acerca de esos fenómenos cuánticos. Los átomos que Bohr imaginó hace 100 años se manipulan como si fueran marionetas: se atrapan individualmente con pinzas ópticas, se enfrían hasta casi el cero absoluto y se manejan sus estados internos con enorme precisión. Hace un siglo, la física cuántica estableció un nuevo paradigma y el conocimiento del átomo supuso un cambio revolucionario en la historia científica y tecnológica del mundo. Ahora, la física cuántica es un recurso sin precedentes para avanzar aún más en la nueva tecnología: desde construir relojes atómicos ultraprecisos o encriptar información muy sensible de manera absolutamente segura, hasta el desarrollo lejano, pero alcanzable, del ordenador cuántico capaz de cálculos hoy día difíciles de imaginar.
Más, "La rareza cuántica de la luz como onda y partícula". Aquí en El País.
Fuente: El País. Oriol Romero-Isart es investigador en el Instituto Max-Planck de Óptica Cuántica en Garching (Alemania).
Niels Bohr escribió sus tres artículos transgresores en 1913
“El conocimiento verdadero y profundo es el de los átomos y el vacío, pues son ellos los que generan las apariencias, lo que percibimos, lo superficial”, decía Demócrito hace 2.400 años. Sin embargo, el átomo se empezó a entender solo hace 100 años, cuando fue protagonista de una de las mayores revoluciones científicas: la física cuántica. Toda la materia que nos envuelve está hecha de átomos; nuestro cuerpo contiene tantos átomos como estrellas se cree que hay en el universo. Hace un siglo, los físicos se enfrentaron al reto de descifrar la pieza fundamental que constituye la materia del universo.
A finales del siglo XIX, los átomos empezaron a dar algunas pistas sobre su naturaleza. Se observó que cuando un átomo acumula un exceso de energía emite luz de solo ciertos colores (frecuencias). En analogía con la música, el átomo sería como un piano que solo puede emitir los sonidos permitidos por sus teclas, pero no sonidos de una frecuencia intermedia, como lo puede hacer un violín. En 1897, J. J. Thomson demostró experimentalmente que el átomo no era indivisible, como dice su etimología, sino que contenía partículas ligerísimas de carga negativa, los electrones. Thomson modeló el átomo como una masa de carga positiva que tiene incrustados los electrones, como si de un bizcocho de pasas se tratara. Junto a su equipo calculó si la vibración de las pasas podía explicar la luz emitida por los átomos. No tuvo éxito, muy a su pesar.
Poco después, en 1911, Ernest Rutherford demostró que la masa de carga positiva del átomo está concentrada en su centro, descubriendo así su núcleo. Él modeló el átomo a imagen de un sistema planetario en el que los electrones son los planetas, y el núcleo el Sol. Pero ese modelo estaba en conflicto con un fenómeno básico en física: cuando la trayectoria de una partícula cargada, como el electrón, se curva, esta pierde energía mediante la emisión de radiación. Es como si la partícula derrapara al girar y perdiera velocidad. Un cálculo sencillo demuestra que los electrones pierden toda su energía, y en consecuencia el átomo debería colapsarse, en 0,00000001 segundos. Realmente no es así; de hecho los átomos que conforman nuestro cuerpo son los mismos que se crearon en el interior de estrellas hace miles de millones de años.
En 1900, el físico alemán Max Planck se enfrentaba a un fenómeno que estaba en total desacuerdo con la física clásica: el perfil de la gráfica de la radiación emitida por objetos a cierta temperatura. Planck propuso una solución desesperada, pero increíblemente acertada: la radiación no se emitía de forma continua, sino a través de pequeños paquetes de energía, los famosos cuantos de Planck. Y en 1905, Albert Einstein utilizó este hallazgo para explicar el efecto fotoeléctrico; fue su annus mirabilis en que conmocionó al mundo de la física con su teoría de la relatividad especial.
Eran tiempos en que el mar de la ciencia estaba muy revuelto; parecía que los pilares fundamentales de la física se derrumbaban. Frente a estas situaciones hay dos tipos de físicos, los conservadores, que se sienten angustiados, y los transgresores que se miden contra las olas y quieren que el mar no se calme. El físico danés Niels Bohr era de los valientes. En 1911 y con solo 26 años, Bohr fue a Inglaterra a trabajar, primero con el grupo de Thomson y después con Rutherford, que acababa de descubrir el núcleo del átomo. Bohr se preguntó: ¿cómo podemos explicar con la física clásica que un átomo emita luz en pequeños paquetes de energía?
En 1913, Bohr respondió a esta pregunta en tres artículos que describían su modelo del átomo, del que este año se celebra su centenario. El primero de ellos contenía la idea más transgresora: la energía de los electrones que orbitan alrededor del núcleo también viene dada en paquetes, es decir, está cuantizada. Con este supuesto y, dado que la energía del electrón depende de la distancia a la que orbita del núcleo, concluyó que el electrón solo puede orbitar a determinadas distancias, o niveles, del núcleo. Cuando un átomo gana energía, el electrón se desplaza hacia las órbitas más alejadas, y al perderla, salta de órbita en órbita, como si bajara los peldaños de una escalera. Estos saltos, que pueden ser de uno o varios escalones, emiten luz, fotones, cuya frecuencia es proporcional a la diferencia de energía que existe entre los dos niveles orbitales.
De esta manera, tan sencilla, Bohr consiguió explicar muchos de los experimentos sobre la emisión de luz de los átomos. No le importaba que los electrones derraparan al girar y perdieran energía, simplemente postuló que eso no sucedía en estas órbitas, ya que estas eran estables por alguna razón desconocida. El modelo, pese a sus limitaciones, explicaba muchos resultados de las líneas espectrales de los gases y del orden de los elementos en la tabla periódica. Hoy sabemos que el átomo de Bohr es demasiado simple, pero introduce rasgos importantes de la física atómica. Aunque al visualizar el mundo cuántico hay que ser siempre precavido, en el caso del átomo es más correcto imaginar los electrones, no como partículas, sino como nubes difusas alrededor del núcleo, cuya densidad en cada punto representa la probabilidad de encontrar el electrón en ese sitio.
Bohr fue un científico emblemático que aglutinó en su instituto a los mejores físicos cuánticos. Famosas fueron sus discusiones con Einstein sobre la interpretación de la física cuántica. En desacuerdo con él, Bohr creía que la naturaleza, en su expresión más íntima, está indeterminada, o sea, que sí juega a los dados. Y acertó.
El científico danés mantuvo famosos debates con Einstein sobre esta materia
Hoy, en numerosos laboratorios de todo el mundo, miles de físicos y físicas investigan y experimentan acerca de esos fenómenos cuánticos. Los átomos que Bohr imaginó hace 100 años se manipulan como si fueran marionetas: se atrapan individualmente con pinzas ópticas, se enfrían hasta casi el cero absoluto y se manejan sus estados internos con enorme precisión. Hace un siglo, la física cuántica estableció un nuevo paradigma y el conocimiento del átomo supuso un cambio revolucionario en la historia científica y tecnológica del mundo. Ahora, la física cuántica es un recurso sin precedentes para avanzar aún más en la nueva tecnología: desde construir relojes atómicos ultraprecisos o encriptar información muy sensible de manera absolutamente segura, hasta el desarrollo lejano, pero alcanzable, del ordenador cuántico capaz de cálculos hoy día difíciles de imaginar.
Más, "La rareza cuántica de la luz como onda y partícula". Aquí en El País.
Fuente: El País. Oriol Romero-Isart es investigador en el Instituto Max-Planck de Óptica Cuántica en Garching (Alemania).
Etiquetas:
Albert Einstein,
ciencia,
ciencias,
Ernest Rutherford,
física,
física cuántica,
luz,
Max Planck,
Niels Bohr,
onda y partícula,
Thomson
Suscribirse a:
Entradas (Atom)