Mostrando entradas con la etiqueta Louis de Broglie. Mostrar todas las entradas
Mostrando entradas con la etiqueta Louis de Broglie. Mostrar todas las entradas

miércoles, 1 de octubre de 2025

_- Los frenéticos meses que dieron origen a la física cuántica hace 100 años

5ta Conferencia Solvay de física de octubre de 1927

_ -¿A quiénes reconoces en la llamada fotografía más inteligente de la historia? Al final de la nota encuentras todos los nombres.

La física cuántica es "uno de los grandes monumentos de la historia de la humanidad", afirma el físico e historiador de la ciencia español José Manuel Sánchez Ron.

Puede sonar raro llamar "monumento" a una rama de la ciencia que estudia la materia a escala microscópica, es decir, el comportamiento de los electrones, los fotones y otras partículas subatómicas.

Pero aunque Sánchez Ron reconoce que se trata de "una creación que no es de piedra ni de ningún material sólido de esos que se pueden tocar", está convencido de que "durará mucho más que cualquiera de ellos".

Por lo pronto, han pasado 100 años desde que se publicó el estudio científico que desató la revolución de la física cuántica, una teoría que todavía sigue transformando ámbitos tan dispares como la medicina, la seguridad nacional y las telecomunicaciones.

"Cambió cómo vivimos, cómo trabajamos, cómo nos relacionamos y nos comunicamos. En ese sentido, la mecánica cuántica tiene una importancia descomunal, mayor que ninguna otra teoría de las que conocemos", afirma Sánchez Ron a BBC Mundo.

"Otro hijo menos bienvenido de la física cuántica son las bombas atómicas de Hiroshima y Nagasaki", agrega para destacar cómo influyó —e influye— poderosamente en la política internacional.

Incluso transformó nuestro propio sentido de la realidad, ya que es una teoría que desafía la intuición. "Creo que puedo decir con seguridad que nadie entiende la mecánica cuántica", declaró en 1964 el físico Richard Feynman en una de sus célebres conferencias.

Justamente por eso Unesco está celebrando el Año Internacional de la Ciencia y la Tecnología Cuánticas con decenas de eventos a lo largo del mundo para marcar un siglo de su creación.

"Algo con este nivel de impacto necesita la atención de políticos, científicos y del público en general", explica a BBC Mundo Amal Kasry, jefa del área de Ciencias Básicas de Unesco.

Por eso, para leer este artículo sobre el origen de la física cuántica el consejo es el mismo que Feynman dio en aquellas conferencias: "Simplemente relájense y disfruten".

Una reportera junto a una computadora cuántica en 27th China Beijing International High-tech Expo en China National Convention Center Fuente de la imagen,China News Service/VCG vía Getty Images Pie de foto,

Un siglo después, la física cuántica es aún una de las áreas científicas más efervescentes.

El joven genio

El 29 de julio de 1925 la revista alemana especializada en física Zeitschrift für Physik recibió un artículo que sacudiría la física al ser publicado unos meses después.

Su autor era un alemán de 23 años llamado Werner Heisenberg.

Esa juventud, lejos de una desventaja, fue una de sus fortalezas, ya que le permitió cuestionar los paradigmas vigentes creados por físicos de la talla de Albert Einstein, Niels Bohr y Arnold Sommerfeld.

Isaac Newton llevaba más de 180 años muerto cuando Einstein tiró abajo su teoría de la gravedad. Heisenberg, en cambio, fue discípulo de Sommerfeld, colaborador de Bohr y mantuvo varios debates con Einstein a lo largo de los años, el único de los tres que jamás aceptó la teoría cuántica.

Según Sánchez Ron, "aparte de genio, joven y con una exquisita formación, se podría decir que Heisenberg estuvo en el lugar adecuado en el momento adecuado". Otros autores lo describen también como ambicioso, jovial y amante del excursionismo.

"Heisenberg logró reunir un gran conjunto de observaciones, de datos, de incógnitas que se habían venido acumulando con especial fuerza a partir de 1900", explica el académico español que este año publicó la trilogía "Historia de la física cuántica" con motivo del centenario.

De hecho, el primer volumen abarca el periodo fundacional de esta teoría y va de 1860 a 1924. El segundo tomo comienza con el artículo de 1925, donde Heisenberg "desarrolló la primera forma satisfactoria de mecánica cuántica".

Pero antes, tuvo que enfermarse.

Una teoría "loca"

Durante años, lo que podría llamarse la "vieja teoría cuántica" fue avanzando y, a la vez, arrastrando problemas e incongruencias.

Tal es así que en 1923 el físico y matemático Max Born escribió: "Es cada vez más probable que no solo se necesiten nuevas hipótesis, sino que todo el sistema de conceptos de la física tenga que reconstruirse desde cero".

Fue en ese mismo año que Heisenberg se incorporó como asistente de Born en la Universidad de Gotinga, Alemania.

Allí el joven descubrió lo que desataría su famoso artículo de 1925: existían problemas en las órbitas usadas para explicar el movimiento de los electrones en el llamado modelo atómico de Bohr-Sommerfeld.

Unos meses después de llegar a Gotinga, Heisenberg se fue un semestre a Copenhague, Dinamarca, a trabajar justamente con Bohr.

Retrato de Werner Karl Heisenberg (1901-1976)

Retrato de Werner Karl Heisenberg (1901-1976)

Fuente de la imagen,Bettmann/Getty Images


Pie de foto,

Con solo 23 años, Heisenberg "desarrolló la primera forma satisfactoria de mecánica cuántica".

"El énfasis en Gotinga estaba más en el lado matemático, en el lado formal, mientras que en Copenhague estaba más en el lado, yo diría, filosófico", explicaría años después Heisenberg.

Esa combinación de influencias fue crucial para ayudarlo a pensar una teoría "loca", como él mismo la llamó.

En un artículo de la revista Nature sobre el centenario de la física cuántica, el historiador de la ciencia Kristian Camilleri cuenta que Heisenberg "experimentó con todo tipo de ideas hasta encontrar una que funcionara: un enfoque muy adecuado para un período de tanta agitación conceptual".

En mayo de 1925 Heisenberg sufrió un fuerte ataque de alergia y se retiró a la isla de Heligoland, en Alemania, para curarse "con los aires de mar", según su autobiografía.

"Aparte de los paseos diarios —escribió el físico— no hubo ocasión externa alguna que me pudiera apartar de trabajar en mi problema y así avancé más rápidamente de lo que me hubiera sido posible en Gotinga".

Heisenberg versus Einstein

"En lugar de construir un modelo atómico basado en la idea de que los electrones se mueven a lo largo de órbitas bien definidas de forma aproximadamente clásica, Heisenberg decidió desarrollar una teoría innovadora del movimiento, una 'mecánica cuántica', en la que los electrones ya no podían considerarse partículas que se mueven a lo largo de trayectorias continuas", cuenta Camilleri.

El propio Heisenberg reconoció en una carta de principios de julio de 1925 que todos sus "miserables esfuerzos" estaban depositados en "eliminar por completo el concepto de órbitas, que, de todos modos, no se pueden observar".

Tal como había hecho Einstein en su juventud, Heisenberg partió de la base de que "las teorías debían evitar cualquier concepto que no pudiera ser observado, medido o verificado", escribe el periodista Walter Isaacson en la biografía "Einstein".

Albert Einstein fumando pipa.

Albert Einstein fumando pipa.

Fuente de la imagen,Bettmann/Getty Images


Pie de foto,
"Ha surgido una nueva moda en la física", se quejaba Albert Einstein refiriéndose a la física cuántica. Sin embargo, su referente fue también su mayor detractor. Isaacson reproduce en el libro el siguiente diálogo del primer encuentro de Heisenberg y Einstein, ocurrido en 1926:

No podemos observar las órbitas de los electrones dentro del átomo —dijo Heisenberg—. Una buena teoría debe basarse en magnitudes directamente observables.

—Pero ¿no creerá usted en serio que solo las magnitudes observables deben formar parte de una teoría física? —protestó Einstein.

—¿No es precisamente lo que usted ha hecho con la relatividad? —preguntó Heisenberg, no sin cierta sorpresa.

—Posiblemente empleé esa clase de razonamiento —admitió Einstein—, pero aún así es un sinsentido.


Luego incluso diría que "un buen chiste no debe repetirse demasiado".

Le gustara a Einstein o no, ya era demasiado tarde: la revolución había llegado para quedarse.

La "avalancha" cuántica

"La rapidez con la que la mecánica cuántica se desarrolló es sorprendente", escribe Camilleri.

El historiador de la ciencia cuenta que "la avalancha de artículos" que se desató "dejó a muchos físicos con dificultades para mantenerse al día con los últimos avances": "Apenas alguien comprendía una nueva técnica o formulación de la mecánica cuántica, aparecía otra".

Incluso cuenta que existen varios ejemplos de físicos que presentaban artículos a revistas científicas y recién entonces se enteraban de que alguien más había descubierto exactamente lo mismo y lo había publicado poco antes.

Según sus cálculos, se publicaron casi 200 artículos sobre la temática entre julio de 1925 y marzo de 1927, cuando Heisenberg publicó su principio de incertidumbre en un artículo que también fue crucial para la física cuántica y que para Camilleri "redondeó su desarrollo".

Para Heisenberg, en cambio, "oficialmente la culminación de la teoría cuántica" ocurrió unos meses después, en octubre de 1927, durante el V Congreso Solvay de física en Bruselas.

Fue allí donde Einstein y Bohr tuvieron su legendario debate acerca de si Dios juega (o no) con los dados y donde se tomó la icónica imagen que reúne a sus 29 asistentes, usualmente apodada la fotografía más inteligente de la historia. No en vano más de la mitad de las personas retratadas ya habían obtenido o terminarían recibiendo el premio Nobel.

Entre los 29 solo hay una mujer, Marie Curie, y aunque mucho ha cambiado desde entonces, la brecha de género es uno de los grandes desafíos de la física cuántica hoy, dice Kasry.

Christine Lagarde visitando Pasqal, empresa francesa líder en computadoras cuánticas.

Christine Lagarde visitando Pasqal, empresa francesa líder en computadoras cuánticas.

Fuente de la imagen,AFP via Getty Images

Pie de foto,

La brecha de género y entre países del norte y del sur son dos grandes desafíos de la ciencia y tecnología cuántica. "El 79% de las empresas cuánticas no tienen mujeres en posiciones de liderazgo y solo 1 de cada 54 solicitantes de empleo en el sector cuántico es mujer", afirma un reporte publicado este año por Unesco.

El otro desafío es "la brecha, la enorme brecha que existe entre el norte y el sur respecto a la tecnología cuántica", afirma Kasry. Incluso, agrega, "solo unos pocos países han desarrollado estrategias concretas" para abordar la temática.

Aquellos frenéticos meses ocurridos hace un siglo impactan hoy en nuestras vidas y lo seguirán haciendo, ya que la física cuántica es aún una de las áreas científicas más efervescentes.

Por eso, aunque "nadie entiende la mecánica cuántica", quizás este artículo al menos ayude a valorarla.

https://www.bbc.com/mundo/articles/cj9wmkpwrkdo


Estas son las personas de la fotografía principal del artículo, enumerados de izquierda a derecha:

Tercera fila: Auguste Piccard, Émile Henriot, Paul Ehrenfest, Édouard Herzen, Théophile de Donder, Erwin Schrodinger, Jules-Émile Verschaffelt, Wolfgang Pauli, Werner Heisenberg, Ralph Howard Fowler, Léon Brillouin.
Segunda fila: Peter Debye, Martin Knudsen, William Lawrence Bragg, Hendrik Anthony Kramers, Paul Dirac, Arthur H. Compton, Louis de Broglie, Max Born, Niels Bohr.
Primera fila: Irving Langmuir, Max Planck, Marie Curie, Hendrik A. Lorentz, Albert Einstein, Paul Langevin, Charles-Eugène Guye, C. T. R. Wilson, Owen Willans Richardson.

domingo, 10 de enero de 2021

_- Física cuántica: qué es la dualidad partícula-onda de la luz y cómo su descubrimiento revolucionó la ciencia

_- Albert Einstein puede ser famoso por su teoría de la relatividad general, pero no fue esta la que le dio el único Premio Nobel de su carrera.

El físico obtuvo el galardón por un descubrimiento que hizo cuando tenía tan solo 26 años.

Se trata de la ley del efecto fotoeléctrico que publicó en 1905 y que planteaba que la luz tenía una propiedad tan contraintuitiva que llevaría a cuestionar la propia noción de la realidad.

No en vano terminó dando origen a la física o mecánica cuántica, una rama que estudia la naturaleza a escala atómica y subatómica, o sea, el mundo de lo ultrapequeño y sus leyes, que son muy distintas a aquellas que gobiernan al mundo que podemos ver.

"La mecánica cuántica marcó una ruptura entre la física clásica y la moderna", explica a BBC Mundo la física colombiana Nelly Yolanda Céspedes Guevara.

"Fue toda una revolución", agregó la también doctora en educación y docente de la Fundación Universitaria del Área Andina, de Colombia.

Para ello, Einstein hizo lo que mejor sabía hacer: romper con ideas largamente establecidas y aceptadas.

"No podemos solucionar nuestros problemas con las mismas líneas de pensamiento que usamos cuando los creamos", dijo el físico alguna vez.

La ley del efecto fotoeléctrico no fue la excepción.

¿Partícula u onda?
En la física, las ondas y las partículas son tan distintas que cada una obedece a sus propias reglas matemáticas.

Einstein ganó el Nobel de Física en 1921 por la ley del efecto fotoeléctrico, que descubrió con 26 años.
"La partícula es todo aquello que tú puedes cuantificar y que en teoría puedes agarrar o tocar", dice Céspedes.

Imagínalo como una piedra: la puedes tomar con tu mano, lanzar contra una pared y, luego de verla rebotar, incluso puedes señalar el lugar preciso donde cayó.

En cambio, explica la física, "la onda es capaz de atravesar de un lugar a otro y no la puedes coger".

Sería como tirar la piedra en un cubo con agua y tratar de agarrar las pequeñas olas que se generan: pasarán por los costados de tu mano, por arriba y entre tus dedos, pero no podrás atraparlas.

Tampoco serás capaz de decir exactamente dónde están esas olas, más que haciendo un gesto aproximado que englobe toda la onda expansiva provocada por la piedra.

Hasta la llegada del siglo XX, el consenso científico indicaba que, por ejemplo, la luz era una onda y el electrón, una partícula.

Pero todo estaba a punto de cambiar.
Según la ley del efecto fotoeléctrico de Einstein, la luz podría generar electricidad solo si, bajo determinadas circunstancias, se comportaba como una suerte de partícula.

En otras palabras, planteó que "la luz no podía ser solo una onda", explica Céspedes.

Para llegar a esa conclusión, agrega, Einstein se basó en ideas previas de físicos como el alemán Max Planck.

El "revolucionario renuente"
En el año 1900, Planck ya había descubierto que había un problema con la luz como onda.

Lejos de ser un flujo constante, afirmó, la luz viajaba en "paquetes" de una gran "cuantía" de energía, concepto de donde luego derivaría el nombre de física cuántica.

Planck fue galardonado en 1918 con el Nobel "en reconocimiento de los servicios que prestó al avance de la física por su descubrimiento de los cuantos de energía".

"El concepto de Planck de cuantos energéticos", explica la Enciclopedia Británica, "entraba en conflicto con toda la esencia de la física teórica pasada".

Y si bien sus investigaciones no le dejaban otra opción más que derribar el conocimiento previo establecido y hasta ganó un Nobel por "descubrir la energía cuanta", Planck fue un "revolucionario renuente", afirma la enciclopedia.

Tal es así que distintos historiadores de la ciencia como el famoso Thomas Kuhn se han negado a darle el título de padre de la física cuántica.

Según argumentan, a partir de sus trabajos, Planck podría haber inferido que la luz se comportaba como una partícula, sin embargo, no lo vio o no se atrevió a afirmarlo y provocar un cambio de paradigma.
Para eso tendría que llegar Einstein.

Ni una cosa ni la otra
En 1905, Einstein había argumentado que, a veces, la luz parecía consistir en "cuantos" (lo que hoy son los fotones) y, cuatro años más tarde, introdujo la dualidad onda-partícula en la física.

Es decir que la luz no era una onda o una partícula: era ambas cosas. Einstein estaba pensando lo impensable.

"La hipótesis de Einstein de los cuantos de luz no fue tomada en serio por los físicos adeptos a las matemáticas durante poco más de 15 años", escribió el historiador de la ciencia Bruce R. Wheaton.

"Incluso (el físico estadounidense) R. A. Millikan, quien en 1914-16 proporcionó la primera evidencia inequívoca de la sorprendente ley de emisión fotoeléctrica de Einstein, siguió también inequívocamente desdeñando la hipótesis de la partícula de luz de la cual se había derivado esa ley", agregó.

Es más: Millikan, quien fue discípulo de Planck, terminaría ganando un Nobel "por su trabajo en la carga elemental de la electricidad y en el efecto fotoeléctrico".

Para desdén de muchos de estos físicos, la dualidad onda-partícula no se quedó en la luz, sino que se amplió a la materia a escala atómica.

La física moderna
En 1924, el físico francés Louis de Broglie propuso una osada analogía: si la luz, que se creía que era una onda, tenía comportamiento de partícula bajo ciertas condiciones, entonces partículas como el electrón también cumplían con esa dualidad.

"Cuando De Broglie propuso esta idea, no había evidencia experimental alguna" que la respaldara, explica la Enciclopedia Británica.

"La sugerencia de De Broglie, su principal contribución a la física, constituyó un triunfo de la intuición", agrega.

Es que, tres años después, la naturaleza ondulatoria de los electrones era demostrada empíricamente por el físico británico George Paget Thomson.

Lo increíble es que así como Thomson obtuvo el Premio Nobel por demostrar que los electrones son ondas, su padre, Joseph John Thomson, lo había ganado décadas antes por probar que los electrones son partículas.

Y sí, De Broglie también recibió el Nobel.
"La idea de Louis de Broglie, que condujo a la formulación más completa del dualismo onda-partícula fue el último acto en una serie de intentos preliminares por parte de los físicos para resolver las paradojas que habían surgido en las teorías de la radiación", escribió Wheaton.

En esa búsqueda, dieron la estocada final al determinismo en la física y provocaron una revolución en el conocimiento que incluso trascendió a la ciencia.

En palabras de Wheaton: "La teoría de partículas de luz de Einstein ha demostrado ser un componente fundamental de la física moderna, quizás la característica que más la distingue de la física newtoniana de los 300 años anteriores".

martes, 25 de abril de 2017

Incertidumbre

La física ha sido algo así como la diosa Kali del siglo XX, venerada y temida, capaz de todos los milagros y de todos los crímenes. Y la responsabilidad, la inconsciencia o los retortijones de conciencia de los sabios dedicados a cultivarla han brindado dramas argumentales a incontables obras literarias de las últimas décadas. Mi pobre erudición sería incapaz de enumerarlas, aunque fuese de modo incompleto. De mi adolescencia recuerdo dos piezas dramáticas que me impresionaron, una Los físicos de Friedrich Dürrenmatt, que transcurre en un manicomio dónde tres locos que creen ser Einstein, Newton y Moebius -y no lo son, pero tampoco están locos- se enfrentan y combaten por la posesión de un secreto aniquilador, socialmente más demente que cualquier demencia privada; otra, El caso Oppenheimer de Heinar Kipphardt, sobre los tormentos morales del inventor de la bomba atómica, que a mediados de los años sesenta representó el Piccolo Teatro de Milán bajo la dirección del gran Giorgio Strehler. Mucho más reciente pero girando también en torno a un tema apocalíptico semejante puedo mencionar la intrigante novela En busca de Klingsor, del mexicano Jorge Volpi. Y tantas más, entre las que no podemos descartar las tan populares historias del genéro de espionaje o ciencia-ficción centradas en la figura del "sabio enloquecido".

Hace pocos meses apareció en Francia una de las piezas más interesantes que he leído de este vasto y redundante mosaico literario: Le principe (El principio), de Jérôme Ferrari, editado por Actes Sud. De ese autor, uno de los novelistas actuales más destacables de su país, hay traducidas al español la novela con que ganó el premio Goncourt, El sermón sobre la caída de Roma (Random House) y una anterior, Donde dejé mi alma (Demipage), ambas absolutamente recomendables. En El principio, un joven aspirante a filósofo —y como tal atribulado y poco seguro de sí mismo— se obsesiona con la trayectoria vital de Werner Heisenberg, genial desde que en su juventud acuñó su celebérrimo "principio de incertidumbre" (¡que estupendo oxímoron!) que desconcertó a sus maestros, para después sentar las bases de la mecánica cuántica, lo que le valió el premio Nobel de Física a los treinta y un años. Su obra se gesta durante el ascenso del nazismo, en competencia o colaboración con la generación excepcional de los Einstein, Louis de Broglie, Max Planck, Niels Bohr, Schrödinger, Paul Dirac, Carl Friedrich von Weizsäcker, Otto Hahn, etc… Los jerarcas nazis les presionaron para conseguir la bomba atómica que les hubiera dado la victoria y que finalmente consiguió Oppenheimer en Estados Unidos. Algunos se escabulleron de patronos tan peligrosos pero otros, como Heisenberg, se dejaron querer, no por ideología nacionalsocialista sino para poder seguir investigando tranquilamente. Después de la guerra, recluidos por los vencedores, algunos sintieron culpabilidad por haber sido cómplices, pero otros no entendían que es lo que se les reprochaba a ellos, que sólo habían seguido con su trabajo: poner al descubierto la íntima belleza objetiva del universo.

El principio de incertidumbre de Heisenberg, en física cuántica, dice que no se puede conocer al mismo tiempo la posición y la velocidad de una partícula elemental. De modo semejante, el sabio no logra conocer la conjunción de su situación histórica y el vértigo acelerado de sus descubrimientos. Y quizá tampoco ninguno de nosotros sepa determinar juntamente dónde está y a dónde va en este mundo hermoso y atroz.

http://cultura.elpais.com/cultura/2015/05/04/actualidad/1430759210_681187.html