Mostrando entradas con la etiqueta bosón de Higgs. Mostrar todas las entradas
Mostrando entradas con la etiqueta bosón de Higgs. Mostrar todas las entradas

jueves, 18 de abril de 2024

_- Muere a los 94 años el científico Peter Higgs, el padre de la "partícula de Dios", uno de los mayores logros de la física moderna

Peter Higgs.

_- Georgina Rannard Role, Reportera de Ciencia

El científico británico Peter Higgs, el ingenioso físico que descubrió la partícula conocida como el bosón de Higgs, falleció a los 94 años.

Este gigante de la ciencia británica obtuvo el premio Nobel en 2013 por sus revolucionarias investigaciones, en las que demostró cómo un bosón desconocido hasta ese entonces contribuía a mantener la unidad del universo.

El descubrimiento de la llamada "partícula de Dios" es considerado como uno de los mayores logros de la física moderna.

En un comunicado publicado este martes la Universidad de Edimburgo, en Escocia, informó de que Higgs falleció el lunes.

La universidad se refirió a Higgs como "un científico verdaderamente brillante, cuya visión e imaginación han enriquecido nuestro conocimiento sobre el mundo que nos rodea".

En la década de los años 60, Higgs, junto con otros físicos, desarrollaron una idea para explicar por qué los componentes del universo contienen materia.

Esa idea desencadenó en la búsqueda del "santo grial" de la física: una partícula que pudiera explicar tres fuerzas fundamentales (el electromagnetismo y las fuerzas nucleares fuerte y débil) dentro de una sola teoría.

El profesor Brian Cox, físico de la Universidad de Manchester y científico del CERN (Organización Europea para la Investigación Nuclear), le rindió un homenaje a Higgs a través de su cuenta en X (antes Twitter): "Fui lo suficientemente afortunado como para reunirme con él varias veces, y más allá de ser un físico famoso -creo que a veces, para su propia vergüenza - siempre fue encantador y modesto".

"Su nombre será recordado mientras sigamos haciendo física relacionada con el bosón de Higgs". 

 El "bosón de Higgs" 

El profesor Higgs 

El profesor Higgs

FUENTE DE LA IMAGEN,OPEN

En 2012, científicos usaron el Gran Colisionador de Hadrones del CERN en Suiza para descubrir la partícula, a la que llamaron el boson de Higgs.

Un año después, el trabajo de Higgs recibió el reconocimiento del premio Nobel en conjunto con Francois Englert, de Bélgica.

Era un hombre tímido al que le incomodaba la atención que le trajo su teoría. Cuando se hizo el anuncio del premio, se limpió una lágrima del ojo pero le dijo a los periodistas: "Es bueno tener a veces la razón".

La directora del CERN, Fabiola Gianotti, le dijo a la BBC: "Peter era una persona muy especial, una figura inmensamente inspiradora para los físicos del mundo, un hombre de modestia rara, un gran maestro y alguien que explicaba la física de una manera muy simple, pero muy profunda".

"Estoy muy triste, y lo extrañaré profundamente", dijo.

Alan Barr, profesor de física de la Universidad de Oxford, le rindió tributo al inmenso impacto de Higgs a nuestro entendimiento del universo.

"Propuso la existencia de un campo que da la base a todo el universo, de la masa a las partículas, de los electrones a los quarks".

"También era un gran caballero, humilde y educado, siempre dando crédito a otros e impulsando a generaciones futuras de científicos y académicos".

lunes, 27 de marzo de 2023

Una (arriesgada) conjetura sobre las externalidades del CERN. A vueltas con la física de partículas

Fue meses antes del hallazgo del bosón de Higgs.

El pasado septiembre de 2011 se informó de un resultado inesperado, absolutamente inesperado, que revolucionaba la física contemporánea: en oposición a los resultados de todos los experimentos anteriores, los neutrinos podían moverse a velocidades superiores a la velocidad de la luz, una afirmación que apuntaba directamente al corazón de la relatividad especial, una teoría cuyas predicciones han sido confirmadas innumerables veces y que está en la base de la electrodinámica cuántica, capaz esta última de generar predicciones con una precisión sin precedentes en la historia de la ciencia [1].

Una breve historia de este resultado «crucial»: el experimento Opera se realizó entre el CERN (Ginebra) y el laboratorio subterráneo de Gran Sasso, bajo los Apeninos, a unos 730 kilómetros de distancia (la existente, aproximadamente, entre las ciudades españolas de Barcelona y Santander). Los aceleradores del CERN enviaron haces de neutrinos hacia Opera. Como este tipo de partículas apenas interactúa con la materia, los neutrinos atraviesan el subsuelo -digamos- sin inmutarse. Los científicos midieron -con sistemas de GPS y relojes sincronizados- la distancia entre el haz emisor de neutrinos y el punto de detección en Opera y el tiempo empleado en el recorrido. Con ello, calcularon la velocidad.

Lo que en septiembre pasado se anunció fue que, según los registros, los neutrinos enviados desde el CERN viajaban a una velocidad superior a la de la luz, adelantándose a ésta en unas 60 nanosegundos (60 mil millonésimas de segundo: 0,00000006 seg). Si se pudiese celebrar una imposible carrera entre partículas, los neutrinos hubieran ganado a los fotones por unos 20 metros de distancia en un recorrido de 730.000 m.

Los resultados suponían una contradicción con datos anteriores, de altísima precisión, sobre la velocidad de los neutrinos [2]. Los científicos implicados en Opera no se quedaron de brazos cruzados tras el anuncio de los «superneutrinos»: repasaron, una y otra vez, los parámetros del experimento realizado y diseñaron nuevas comprobaciones para contrastar, positiva o negativamente, los realizados. Cambiaron, por ejemplo, las características de los haces de partículas que partían del CERN para mejorar la medida del tiempo. Empero, el resultado que obtuvieron seguía siendo el mismo. ¡Irrumpáin los superneutrinos superlumínicos! ¡Más allá de c, el movimiento era posible!

Sheldon Lee Glashow, Premio Nobel de Física en 1979 junto a Steven Weinberg y Abdus Salam, uno de los grandes especialistas internacionales en física de partículas, se manifestaba sobre el resultado el pasado diciembre de 2011: «Si fuera correcto [el experimento] y los neutrinos fueran 25 partes por millón más rápidos que la luz, significaría que casi todos lo que sabemos está equivocado, saltaría por los aires un siglo de física. Partamos de la base de que la Teoría de la Relatividad Especial de Einstein es, al menos, aproximadamente correcta, y si tiene un fallo debe ser pequeño, porque hemos hecho muchas pruebas, en muchas direcciones y resulta siempre correcta».

Su primera reacción ante los resultados la narraba del modo siguiente: «Me enteré en Italia y cuando llegué a casa, en Boston, vino mi colega Andy Cohen y recordamos aquel trabajo de hace 50 años. Al rehacer los cálculos aplicados a los neutrinos comprobamos que, siendo superlumínicos, no podrían emitir luz como los protones». Sin embargo, añadía, emitirían pares de partículas electrón-positrón, «perderían su energía» y, por ello, no hubieran llegado al detector Opera. Además, otros numerosos experimentos diferentes habían observado «millones de interacciones de neutrinos en los que debería haber aparecido esa emisión de pares electrón-positrón». Nunca había aparecido.

¿Debía haber entonces algún error en Opera? Eso pensaba Lee Glashow. Acertó. «El de Opera es un equipo muy competente, muy bueno», pero el realizado era un experimento muy, pero que muy complicado. ¡No sólo la física teórica es sofisticada! «Han eliminado una potencial fuente de error, con el nuevo haz de los neutrinos que parte del CERN, pero aún tiene que revisar cuestiones sobre la medida de la distancia recorrida y del tiempo empleado». Mientras tanto, señalaba Lee Glashow, se repetiría el experimento en USA, en el detector Minos, y se estaban repasando los datos de un experimento similar en Japón.

Lee Glashow recordaba una situación parecida de los años ochenta con el gran físico canario Blas Cabrera como protagonista «[…] me viene una a la memoria: en los años ochenta el físico español Blas Cabrera, trabajando en Stanford, anunció haber detectado un monopolo magnético [una teórica partícula subatómica]. No hubo otro, pese a que el experimento se hizo con muchísima más precisión, y no se encontró el error». La conclusión extraída por el Premio Nobel a sus 79 años de edad: «Si es así, me retiro. No estoy preparado para renunciar a la conservación de energía y momento» [3]

La cronología final de los resultados y declaraciones puede ser expuesta así:

23 de septiembre de 2011. Dario Autiero, en nombre de los colaboradores del experimento Opera (Instituto Nacional de Física Nuclear italiano), anuncia en el CERN haber medido una velocidad de los neutrinos superior a la de la luz (contra lo establecido en la teoría de la relatividad especial de Einstein).

Octubre de 2011. Se acumulan comentarios científicos sobre el asunto; la inmensa mayoría son críticos con el supuesto hallazgo.

Noviembre de 2011. Opera repite el experimento: obtiene los mismos resultados sobre los, supuestamente, neutrinos superlumínicos.
Febrero de 2012. Los autores del «experimento crucial» admiten dos fallos en su detector. ¿Dónde se ubicaron? En una conexión de fibra óptica y en un temporizador. ¡La materia! ¡Ay la materia!

Marzo de 2012. Dimiten el portavoz de la colaboración Opera, Antonio Ereditato, y Dario Autiero, el coordinador científico del experimento. Ese mismo mes, Icarus, otro experimento de neutrinos del laboratorio de Gran Sasso, anuncia que han medido la velocidad de los neutrinos: c no es superada.

Junio 2012. Cuatro experimentos de Gran Sasso, incluidos Opera [4] e Icarus, han repetido las mediciones. Según los resultados de todos ellos, la velocidad de los neutrinos es coherente con c, con la velocidad de la luz.

El CERN quedaba algo tocado indirectamente. Lo conseguido sobre el bosón de Higgs lo ha vuelto a poner en el primer plano de la comunidad científica internacional.

Pablo García, un físico de partículas del Ciemat, y miembro también del CERN, ha declarado: «Uno puede argüir precipitadamente que es un error imperdonable, pero en realidad esto pone de manifiesto la complejidad del experimento y lo difícil que es tener bajo control todos los detalles ; de hecho, forma parte de la vida cotidiana del científico enfrentarse a estas situaciones en las que la emergencia de un efecto desconocido pone a prueba la solidez de tu trabajo» [la cursiva es mía]

Resumiendo: los mismos científicos de Opera que anunciaron el resultado encontraron dos fallos al repasar su trabajo. Uno residía en un dispositivo clave para sincronizar los GPS; el segundo se ubicaba en la conexión por fibra óptica entre el receptor de GPS y el reloj principal de la toma de datos.

Más allá de la sin duda enorme complejidad de la «cosa en sí», una conjetura extracientífica sobre lo sucedido: no debería extrañarnos que ambos fallos tuvieran algo que ver, más o menos directamente, con la presencia de externalidades en el CERN, con las condiciones de trabajo de técnicos y trabajadores que no forman parte de la plantilla del Laboratorio europeo sino de empresas contratadas (o de subcontratas de subcontratas) para realizar determinadas tareas por importantes o cruciales que esas puedan ser. ¡Externalizar es la divisa esencial del capitalismo realmente existente nos ubiquemos donde nos ubiquemos! También en este ámbito. Por ejemplo, ¿cómo y quiénes realizaron las conexiones de fibra óptica?

Superficialmente, se dirá, «externalizar» ciertas tareas sale más a cuenta y ese tipo de cuentas, como es sabido, cuentan mucho. El gran físico español Álvaro de Rújula habló de ello hace meses refriéndose a una circunstancia muy similar. De tal modo, podría inferirse con la prudencia siempre debida, que el capitalismo sin bridas en el que (mal)vivimos no es tampoco afable con la ciencia básica ni con la experimentación que le es anexa. ¿Por qué tendría que serlo?



Notas:

[1] Según la teoría de la relatividad especial, existe una velocidad límite. Sólo puede ser alcanzada por partículas de masa cero. Si los neutrinos perteneciesen a esta categoría (y no es el caso), deberían moverse con velocidad c, la de la luz, no más rápido. Dado que sabemos que tienen una masa mayor que cero, deberían ir más despacio que los fotones, en ningún caso más deprisa.

[2] Las observaciones más notables a este respecto son las de los neutrinos emitidos por supernova 1987A, una explosión estelar que se observó en el cielo. Se pudo entonces registrar la llegada de unos neutrinos de energía muy inferior a los de Opera y con velocidad acorde con la teoría de la Relatividad
 
[3] El paso -«no estoy preparado para renunciar a la conservación de energía y momento»- muestra la grandeza científica de Sheldon Lee Glashow y la enorme dificultad que representa revisar principios científicos más asentados, especialmente por científicos no jóvenes.

[4] Hay más nudos en esta historia: parte de los miembros de Opera no quisieron firmar en su momento el artículo científico con los resultados de los neutrinos superlumínicos y fueron constantes, según diversas informaciones, los debates internos acerca de si fue o no apresurada la presentación pública inicial de los resultados.

lunes, 4 de noviembre de 2013

Un viaje a los fundamentos del mundo moderno

Los científicos no atisban el alcance de sus experimentos pero saben de su potencial práctico
La comprensión de la naturaleza siempre augura grandes transformaciones

Einstein se apoyó en su amigo Grossman para formular su teoría.
Pocas noticias científicas han alcanzado el impacto  del reciente descubrimiento del bosón de Higgs en el Gran Colisionador de Hadrones (LHC) junto a Ginebra, tal vez lo más parecido a una catedral que ha producido la ciencia moderna. Mueve a la sorpresa que un hallazgo de esta naturaleza, relativo al más oscuro y abstruso rincón de la ya de por sí oscura y abstrusa mecánica cuántica, consiga una repercusión pública de tal magnitud, aunque es cierto que todo parece haber conspirado en este caso para violar los preceptos del periodismo o incluso del sentido común.

Para empezar, el LHC es la mayor y más compleja máquina construida jamás, o “uno de los grandes hitos de la ingeniería humana”, en palabras de sus constructores del  CERN, o Laboratorio Europeo de Física de Partículas. Situada en un túnel subterráneo de 27 kilómetros de perímetro bajo la frontera francosuiza, cuenta con los más avanzados instrumentos y detectores; 10.000 científicos de 100 países están implicados en su diseño y construcción y tiene un presupuesto cercano a los 7.500 millones de euros. Cuando se emplea la expresión Gran Ciencia, esto es exactamente lo que uno tiene en la cabeza.

Y eso no es todo, desde luego. Esta prodigiosa pieza de ingeniería se concibió para permitir a la comunidad internacional de físicos poner a prueba los ingredientes más fundamentales de sus teorías sobre el mundo subatómico, y uno de ellos era el bosón de Higgs cuya existencia se ha confirmado este mismo año, no mucho después de que la mayor máquina construida por la humanidad superara sus previsibles problemas de rodaje. El hallazgo de la partícula de Higgs puede considerarse uno de los mayores éxitos de la ciencia experimental de todos los tiempos, y así lo ha entendido la academia sueca  al conceder el último premio Nobel de Física a François Englert y Peter Higgsdos de los teóricos que propusieron su existencia en los años sesenta. Todos los ingredientes de una gran noticia están ahí, y esto explica en retrospectiva el impacto mediático de la noticia.

Hay sin embargo una pregunta que se hace cualquier miembro informado del público, que aparece en todos los foros y que posee toda la lógica si se tienen en cuenta los 10 años que ha llevado construir el LHC, los 10.000 científicos que han intervenido y los 7.500 millones de euros asignados al proyecto: ¿para qué sirve esto? ¿Cuál es la utilidad del celebérrimo bosón de Higgs? ¿Cómo piensan los científicos devolver semejante inversión a la sociedad que la ha financiado con sus impuestos? Es una buena pregunta, y una que resulta condenadamente difícil de responder. Y sin embargo, por paradójico que resulte, no es una pregunta que preocupe demasiado a los científicos.

Porque los científicos no saben cuáles son las consecuencias prácticas del bosón de Higgs. Pero saben que serán enormes, porque eso es lo que se desprende de la no muy larga historia de la ciencia. La comprensión profunda de la naturaleza es siempre el prólogo de un conjunto de aplicaciones prácticas que ni siquiera los descubridores de un fenómeno suelen intuir. Pero que siempre tienen escondido en su núcleo el potencial para transformar el mundo de forma radical: las claves del progreso, la receta del futuro. Basta echar un vistazo a la historia de la ciencia para comprobarlo una y otra vez.

Tomen a Newton, el genio británico que fundó la ciencia moderna: no solo sus principios fundamentales, sino también sus modos y sus estrategias, el estilo y la pericia que los científicos siguen usando tres siglos después. Newton se sintió obsesionado desde chaval por unos cuantos enigmas que habían planteado dos gigantes de las generaciones anteriores a la suya: las elegantes curvas elípticas que describían los planetas en su armoniosa órbita alrededor del Sol, tal y como había descubierto Kepler; y el extraño comportamiento de los objetos sometidos a la gravedad de la Tierra que, contra toda intuición —y contra el conocimiento milenario recibido de las ingeniosas ocurrencias de Aristóteles— había demostrado experimentalmente Galileo unas décadas antes.

Las llamadas leyes de Kepler eran, desde luego, un enigma a la altura de la mente más curiosa. Johannes Kepler formuló sus dos primeras leyes en 1609, basándose en las detalladas observaciones de los movimientos planetarios amasadas pacientemente por el astrónomo danés del siglo XVI Tycho Brahe, de largo las más precisas de la época, y de cualquier época anterior. La primera ley no solo dice que los planetas se mueven alrededor del Sol, confirmando el modelo heliocéntrico de Copérnico, sino también la forma matemática exacta que siguen sus órbitas: no son círculos, sino elipses, unas curvas ya descubiertas en tiempos de Platón, pero en un contexto completamente distinto: junto a las hipérbolas y las parábolas, las elipses forman una especie de aristocracia geométrica: las cónicas, los tres tipos de curvas que pueden resultar de cortar un cono, o de tirar al mar un gorro de bruja. Pero ¿por qué los planetas habrían de moverse en elipses?

La segunda ley planteaba un puzle todavía más impenetrable. Los planetas no se movían con la misma velocidad a lo largo de toda su órbita: aceleraban al acercarse al Sol y se frenaban al alejarse. Y no de cualquier forma: Kepler había sido capaz de cuantificar el efecto con precisión matemática, aunque de un modo realmente chocante: si el planeta estuviera unido al Sol por una cuerda imaginaria, la cuerda barrería la misma área por unidad de tiempo. Y la tercera ley, descubierta por Kepler nueve años después que las dos primeras, no hacía más que rizar el rizo: el tiempo que un planeta tarda en dar la vuelta al Sol —lo que en la Tierra llamamos un año— guarda una sorprendente relación con la distancia del planeta al Sol: el cuadrado del periodo de revolución (el cuadrado de lo que dure el año del planeta en cuestión) varía con el cubo de la distancia del planeta al Sol. Estas relaciones matemáticas son tan chocantes que el propio Kepler se dejó llevar a un delirio geométrico para explicarlas, donde cada planeta ocupaba uno de los llamados sólidos platónicos —cubos, tetraedros, icosaedros y cosas así— en una versión reeditada y hasta mejorada de la armonía de las esferas pitagórica.

Pero ese rompecabezas laberíntico de curvas cónicas, cuadrados, cubos y áreas barridas por unidad de tiempo fue exactamente lo que motivó a Newton al reto enorme de resolverlo. El resultado fue la ciencia moderna y la práctica totalidad de la tecnología de los tres últimos siglos —lo que diferencia nuestro tiempo de un mundo de caballos, floretes y mosquetones—, pero la intención de Newton nunca fue cambiar el mundo ni la forma de pensar sobre el progreso de la humanidad. Su motivación fue entender el mundo: aceptar el desafío de sus enigmas físicos y matemáticos, y adoptar la actitud teórica y experimental adecuada para resolverlo. De ahí venimos. Una vez entendido un proceso, la revolución tecnológica es poco menos que inevitable.
Fuente: El País.

jueves, 10 de octubre de 2013

Nobel de Física 2013 para los "padres" del Bosón de Higgs

La Real Academia de Ciencias de Suecia anuncia la concesión del galardón a Peter Higgs y François Englert por haber postulado la existencia de esta partícula subatómica

El belga François Englert, de la Universidad Libre de Bruselas, y el británico Peter W. Higgs, de la Universidad de Edimburgo, los científicos que explicaron el funcionamiento del Bosón o Partícula de Higgs, han sido galardonados con el Premio Nobel de Física 2013, según ha anunciado este martes la Real Academia Sueca de las Ciencias en Estocolmo. Englert, de 81 años, y Higgs, de 84 -galardonados este mismo año con el Premio Príncipe de Asturias de Investigación Científica y Técnica-, han sido premiados "por el descubrimiento teórico del mecanismo que contribuye a nuestra comprensión del origen de la masa de las partículas subatómicas", según la Academia.

El primer ministro belga, Elio Di Rupo, ya ha reaccionado a la noticia felicitando "calurosamente" a François Englert, cuyo premio "corona una de las inteligencias belgas más brillantes y una carrera excepcional al servicio de la ciencia de las partículas".

La Real Academia de Ciencias explicó que un equipo de físicos postuló teóricamente la existencia de este mecanismo en 1964 y que "recientemente ha sido confirmado por el descubrimiento de las partículas fundamentales predichas" en experimentos en el Centro Europeo de Física de Partículas (CERN).

Englert y Higgs recibieron este mismo año el premio Príncipe de Asturias de Investigación. Englert nació en 1932 en y ejerce en la Universidad Libre de Bruselas, mientras que Higgs nació en 1929 y ejerce en la Universidad de Edimburgo (Reino Unido).

El anuncio de este galardón estuvo marcado por el inusual retraso del acto, que estaba inicialmente convocado para las 09.45 GMT y que tan sólo unos instantes antes de esa hora se pospuso sin alegar motivo alguno, al principio 30 minutos y finalmente 60.

Los ganadores de este premio, dotado con ocho millones de coronas suecas (922.000 euros o 1,3 millones de dólares), la misma cantidad que el año pasado pero un 20% menos que en 2011, siguen en la nómina del Nobel de Física al francés Serge Haroche y el estadounidense David J. Wineland, que obtuvieron el premio en la última edición.

La Real Academia de Ciencias de Suecia les concedió este galardón en 2012 por sus trabajos sobre la interacción entre la luz y la materia.

La presente edición de los Nobel arrancó ayer con la concesión del premio de Medicina a los científicos estadounidenses James E. Rothman y Randy W. Schekman y al alemán Thomas C. Südhof por descubrir "la maquinaria que regula el tráfico vesicular, un sistema de transporte esencial en nuestra células".

Mañana se dará a conocer el nombre de los ganadores del Nobel de Química; y el jueves y el viernes, el de quienes obtengan el de Literatura y de la Paz, respectivamente, para concluir el próximo lunes, con el anuncio del de Economía.

La entrega de los Nobel se realizará, de acuerdo a la tradición, en dos ceremonias paralelas el 10 de diciembre, en Oslo para el de la Paz y en Estocolmo los restantes, coincidiendo con el aniversario de la muerte de Alfred Nobel
Fuente: http://www.publico.es/473394/nobel-de-fisica-2013-para-los-padres-del-boson-de-higgs

Anexo 1
Principia Marsupia. "Descifrar lo que está delante de nuestros ojos requiere una lucha constante" Orwell

El bosón de Higgs (“la partícula de Dios”) en 9 claves
Alberto Sicilia
4 de julio de 2012
Hoy es un día histórico para quienes nos dedicamos a la física. Aunque el anuncio del descubrimiento parece que no será definitivo, dos equipos del CERN tienen evidencias de una partícula que hemos perseguido durante décadas: el bosón de Higgs.

Os propongo explorar, de manera sencilla, algunas cuestiones relacionadas con esta aventura científica: ¿qué es el bosón Higgs? ¿por qué es tan importante encontrarlo? ¿de dónde surgió el apodo “la partícula de Dios”?

Pero, antes de nada, demos un pasito atrás y comencemos por una pregunta más sencilla:
1.- ¿De qué está formada la materia?
La materia esta formada por átomos.
Un átomo es como un Sistema Solar en miniatura: tiene un gran núcleo central (compuesto por protones y neutrones) y a su alrededor giran los electrones.

2.- ¿De qué estan formados los protones y los neutrones?
Los protones y los neutrones están formados de unas partículas más pequeñas que se llaman quarks.
Hay 6 tipos de quarks y fueron bautizados con nombres un poco extraños: el quark “arriba”, el quark “abajo”, el quark “encanto”, el quark “extraño”, el quark “cima” y el quark “fondo”.
Un protón está formado por 2 quarks “arriba” y 1 quark “abajo”. Un neutrón está formado por 1 quark “arriba” y 2 quarks “abajo”.

3.- ¿Y de qué están formados los electrones?
Al contrario que los protones y los neutrones, los electrones son partículas elementales, es decir, no se pueden dividir más.

4.- Vale, entonces el electrón y los quarks son partículas elementales, ¿cuál es el problema?
El problema es que no comprendemos por qué estas partículas tienen masas tan diferentes. Por ejemplo, un quark “cima” pesa 350.000 veces más que un electrón. Para que os hagáis una idea de lo que significa este número: es la misma diferencia de peso que hay entre una sardina y una ballena.

5.- ¿Cuál es la solución a este problema?
En 1964, el físico inglés Peter Higgs, junto a otros colegas, propuso la siguiente solución: todo el espacio está relleno de un campo (que no podemos ver) pero que interacciona con las partículas fundamentales. El electrón interactúa muy poquito con ese campo y por eso tiene una masa tan pequeña. El quark “cima” interacciona muy fuertemente con el campo y por eso tiene una masa mucho mayor.
Para comprender esto, volvamos a la analogía de la sardina y la ballena. La sardina nada muy rápidamente porque es pequeñita y tiene poco agua alrededor. La ballena es muy grande, tiene mucho agua alrededor y por eso se mueve más despacio. En este ejemplo, “el agua” juega un papel análogo al “campo de Higgs”.
Si lo pensáis despacio, la teoría de Higgs es muy profunda pues nos dice que la masa de todas las partícula está originada por un campo que llena todo el Universo.

6.- ¿Problema resuelto?
No tan rápido, caballeros. En física, una teoría sólo es válida si podemos verificarla con experimentos. La historia de la ciencia está repleta de teorías hermosísimas que resultaron ser falsas.
El campo de Higgs es sólo una teoría. Para comprobarla necesitamos encontrar la partícula asociada al campo de Higgs: el llamado “bosón de Higgs”.

7.- ¿Por qué es tan difícil observar el bosón de Higgs?
Cuando queremos detectar el bosón de Higgs nos enfrentamos a 2 problemas fundamentales:
1) Para generar un bosón de Higgs, se necesita muchísima energía. De hecho, se necesitan intensidades de energía similares a las producidas durante el Big Bang. Por eso hemos necesitado construir enormes aceleradores de partículas.
2) Una vez producido, el bosón de Higgs se desintegra muy rápidamente. Es más, el bosón de Higgs desparece antes de que podamos observarlo. Sólo podemos medir los “residuos” que deja al desintegrarse.
Estos dos problemas son de una complejidad tan tremenda que para resolverlos hemos necesitado el trabajo de miles de físicos durante varias décadas.

8.- ¿Y el término “la partícula de Dios”? ¿Acaso no éramos científicos?
El origen del apelativo “la partícula de Dios” es una de mis anécdotas favoritas en física.
Allá por los años 90, Leo Lederman, un Premio Nobel, decidió escribir un libro de divulgación sobre la física de partículas. En el texto, Lederman se refería al bosón de Higgs como “The Goddamn Particle” (“La Partícula Puñetera”) por lo difícil que resultaba detectarla.
El editor del libro, en un desastroso arranque de originalidad, decidió cambiar el término “The Goddamn Particle” por “The God Particle” y así “La Partícula Puñetera” se convirtió en “La Partícula de Dios”.

9.- ¿Una vez se confirme la teoría de Higgs, la física de partículas se ha terminado?
No. La detección del bosón de Higgs es sólo el comienzo de nuevas aventuras (¡los físicos seguiremos teniendo trabajo por mucho tiempo!).
Todavía quedan decenas de problemas que estamos muy lejos de resolver. Algunos ejemplos: ¿qué es la materia oscura? ¿cómo formular una teoría cuántica de la gravedad? ¿los quarks y los leptones son verdaderamente partículas elementales o tienen una subestructura? ¿todas las fuerzas se unifican a una energía suficientemente alta?
Al final, nuestro trabajo como científicos consiste en avanzar, aunque sólo sea un pasito, para que las generaciones futuras comprendan, un poquito mejor que nosotros, cómo funciona este hermoso Universo que nos rodea.
Fuente: http://www.principiamarsupia.com/2012/07/04/el-boson-de-higgs-la-particula-de-dios-en-9-claves/

Anexo 2.
El bosón de Higgs explicado en 4 minutos (VÍDEO).
Publicado el 8 de octubre de 2013 por Alberto
¡Enhorabuena a Peter Higgs y François Englert por el Premio Nobel de Física 2013!
Para celebrarlo, hemos preparado un vídeo de 4 minutos en el que explicamos el descubrimiento del bosón de Higgs.
Para una explicación un poquito más larga, podéis leer “El bosón de Higgs en 9 claves”.
Por cierto, lo de la “partícula de Dios” se lo debemos a un editor cachondo que cambió “The Goddamn particle” (la maldita partícula) por “The God particle”.
Aquí también podéis encontrar más vídeos explicando la Física Cuántica
Público
Fuente: http://www.principiamarsupia.com/2013/10/08/el-boson-de-higgs-explicado-en-4-minutos-video/

Física, premios Nobel


¿Cómo contaría Higgs en qué consiste el bosón de Higgs? Eso fue lo que le pidió la BBC al famoso físico británico Peter Higgs hace unos meses.

Pero, dada la complejidad del tema, incluso el "padre" del hallazgo tuvo dificultades para llevar su teoría a un lenguaje comprensible para la mayoría.

Puede ver su explicación en el video que acompaña a este texto.

En los últimos días se volvió a hablar del bosón de Higgs debido a que el físico británico y su colega belga François Englert, de 84 y 80 años, respectivamente, obtuvieran el Premio Nobel de Física 2013.

Ambos obtuvieron el reconocimiento por la investigación que presentaron en 1964, separadamente, y que planteó la teoría de cómo las partículas adquieren masa, lo que permite comprender -al menos en parte- el origen del universo.

Tras el anuncio se informó que Higgs, por los momentos, no hablaría sobre el tema. Se dijo que es tímido, que estaba de vacaciones y, por eso, había apagado su celular.

Un colega refirió que el profesor emérito de la Universidad de Edimburgo, en Escocia, Reino Unido, quería relajarse porque sabía que, a su regreso, luego de que se diera a conocer la noticia, tendría que lidiar con una "tormenta mediática".