Mostrando entradas con la etiqueta Edward Teller. Mostrar todas las entradas
Mostrando entradas con la etiqueta Edward Teller. Mostrar todas las entradas

miércoles, 9 de agosto de 2023

_- Lise Meitner


Feb, 11, 1939: Lise Meitner, 'Our Madame Curie' | WIRED

_- Hasta 1938 se creía que los elementos con números atómicos superiores a 92 (los elementos transuránidos) podían aparecer cuando se bombardeaban los átomos de uranio con neutrones. Fue la química Ida Noddack la que propuso en 1934 que probablemente ocurriría lo contrario. En 1938, Otto Hahn, Lise Meitner, Fritz Strassmann y Otto Frisch fueron los primeros en demostrar experimentalmente que el átomo de uranio, al ser bombardeado con neutrones, en realidad se fisiona.

Con el doctorado por la Universidad de Marburg (Alemania) en la mano y con la ilusión puesta en ser un químico industrial en una empresa internacional, Otto Hahn viajó a Inglaterra para mejorar su conocimiento del inglés. Para mantenerse mientras estudiaba encontró un trabajo de ayudante en el laboratorio de William Ramsay en el University College (Londres). Hahn sobresalió pronto por su enorme capacidad como científico experimental: su primer gran resultado fue el aislamiento de torio radiactivo. Con el gusto por la investigación básica bien arraigado, Hahn continuó su formación con Ernest Rutherford en Montreal. Finalmente volvió a su Alemania natal para unirse al instituto Emil Fischer de la Universidad de Berlín.

Hahn buscaba un colaborador con el que proseguir sus estudios sobre radioactividad experimental y terminó encontrando a Lise Meitner. Ella había ido a Berlín para asistir a las conferencias sobre física teórica de Max Planck, tras haber terminado su doctorado en la Universidad de Viena en 1905 (dirigido por Ludwig Boltzmann). En el primer año de la asociación Hahn-Meitner los investigadores tuvieron que trabajar en una carpintería en Dahlem dado que la universidad no aceptaba mujeres. En los años siguientes las cosas cambiaron bastante. Para 1912 el grupo de investigación trabajaba en el Sociedad Kaiser Wilhelm, en la que Fritz Haber era director del instituto de química física, Hahn lo era del de radioactividad y, desde 1918, Meitner era jefa del departamento de física de éste. Durante la I Guerra Mundial (1914-1918), Hahn trabajó en el servicio de armas químicas (gases) que dirigía Haber y Meitner fue enfermera voluntaria especializada en rayos X en el ejército austriaco.

El descubrimiento del neutrón en 1932 por James Chadwick dio un nuevo impulso a los estudios sobre la radioactividad porque esta partícula atómica sin carga podía usarse con éxito para bombardear el núcleo atómico. Meitner, Hahn y un alumno de doctorado de éste, Fritz Strassmann, que trabajaba con los socios desde 1929, estaban enfocados en la identificación de los productos del bombardeo con neutrones y lo patrones de desintegración del uranio, siguiendo el trabajo que Enrico Fermi y su equipo había iniciado en 1934.

En 1938 Meitner tuvo que huir de Berlín ya que la persecución de los judíos era ya abierta. Encontró acogida en el Instituto Nobel de Estocolmo (Suecia). Su sobrino, Otto Frisch, trabajaba cerca, en el instituto de Niels Bohr en Copenhague (Dinamarca). Mientras tanto, Hahn y Strassmann se encontraban con que habían obtenido bario de forma inesperada en sus experimentos, un elemento mucho más ligero que el uranio, e informaron de ello a Meitner.

En el número 47 de Angewandte Chemie (1934), Ida Tacke-Noddack (codescubridora del renio y varias veces candidata al Nobel) había escrito en contra de la opinión general: “Es concebible que cuando los núcleos pesados son bombardeados con neutrones estos núcleos puedan descomponerse en varios fragmentos bastante grandes, que son ciertamente isótopos de elementos conocidos, pero no vecinos [en la tabla periódica] de los elementos irradiados”.

Meitner y Frisch hicieron cálculos teóricos usando el modelo de Bohr de “gota líquida” (1935) para el núcleo atómico y pudieron confirmar que lo que se había producido era una fisión del núcleo. Pronto quedó claro que el bario estaba entre los isótopos estables producto de la desintegración radioactiva de los elementos transuránidos que se habrían formado tras el bombardeo con neutrones del uranio. Las noticias de la fisión del átomo y sus increíbles posibilidades corrieron como la pólvora, el 2 de agosto de 1939 Albert Einstein firmaría la famosa carta al presidente Roosevelt (Escrita en su mayor parte por Leó Szilárd, con la colaboración de Edward Teller y Eugene Wigner) que terminaría dando origen al Proyecto Manhattan.

Hahn, Meitner y Strassmann no intervinieron en la investigación de armas nucleares durante la II Guerra Mundial. Al final de la guerra Hahn se enteraría de tres cosas que lo dejaron pasmado: que le habían concedido el premio Nobel de química de 1944, que no se lo habían concedido a Meitner y que fue el hallazgo de su equipo de 1938 el que había dado comienzo a la creación de la bomba atómica.

Hahn llegó a ser director de la Sociedad Max Planck (sucesora de la Kaiser Wilhelm) y un destacado opositor al uso armamentístico de la energía atómica. Meitner se quedó en Suecia investigando. Strassmann dio origen a toda una escuela de químicos nucleares en Maguncia (Alemania). Los tres recibieron el premio Enrico Fermi en 1966.

Su historia, es muy parecida a la de otras Mujeres que a lo largo de la historia, no tuvieron el reconocimiento que merecían, y en algunos casos fueron directamente olvidadas.

Lise Meitner nació un 7 de noviembre de 1878 en Viena, por esa época capital de Imperio Austro-Húngaro.

Creció en el seno de una familia judía con un elevado nivel cultural y una relativa tranquilidad económica.

Desde muy pequeña mostró una atracción natural por la ciencia y le gustaban sobre todo las matemáticas, un talento visto y potenciado por sus padres Philipp Meitner, abogado y maestro de ajedrez, y Hedwig Skovran, una muy buena música aficionada, que contrataron profesores particulares para ayudarla a seguir aprendiendo al -margen de los contenidos escolares.

Cuando Lise terminó los estudios obligatorios básicos, a los 14 años no pudo acceder al instituto para preparar su ingreso a la universidad, porque las Mujeres no podían legalmente acceder a estudios superiores.

No obstante, ella siguió formándose por su cuenta, con los libros y materiales que podía conseguir, y perfeccionarse como pianista.

Cuando en 1897 las Mujeres fueron finalmente admitidas, y aunque Lise no había tenido la posibilidad de una preparación formal, en el verano de 1901, y con 23 años se convertía en la primera mujer  admitida en la carrera de física en la Universidad de Viena.

No obstante, los Hombres dominaban el ámbito de la Ciencia. El químico Otto Hahn le propuso colaborar con él, pero el laboratorio no podía aceptar mujeres y Lise tuvo que trabajar en un sótano que antes había sido el taller de un carpintero. Su trabajo no era remunerado, ya que por ser mujer no recibía ningún dinero, y su labor en el Kaiser Wilhelm Institut era gratuita.

Esta situación cambió en 1913 cuando el mismísimo Max Planck, su antiguo profesor, la contrató como asistenta en su laboratorio.

Durante la I G. M., además, trabajó como técnica de rayos X en el hospital Lichterfelde de Berlín.

En 1926, Lise obtuvo una plaza como profesora titular de Física Nuclear Experimental en la Universidad de Berlín, siendo la primera Mujer en conseguirlo. Con la llegada al poder de Hitler, una gran mayoría de Científicos Judíos huyeron de Alemania, Lise decidió continuar su trabajo en Berlín, pero perdió su cátedra. 

La situación política se fue agravando. Fue privada de su nacionalidad y al tratar de abandonar el país, el gobierno Nazi le quitó el pasaporte y debió escapar. Finalmente consiguió llegar a Estocolmo en 1938, dónde encontró asilo y adoptó la nacionalidad Sueca, retomado allí sus investigaciones en un nuevo laboratorio, a condición de no publicar con su nombre los resultados de sus experimentos.

Por ello, un artículo crucial sobre la división del átomo, publicado el 6 de enero de 1939 en Naturwissenschaften, solo llevó la firma de Hann, por temor a ser descubierta.

En 1942 rechazó la oferta de unirse al Proyecto Manhattan, el grupo de científicos creado para conseguir la bomba atómica. Aún siendo consciente de la guerra y del peligro que el nazismo suponía para el Mundo Libre y la supervivencia del Pueblo Judío, no quería ser partícipe de la creación de un arma de destrucción masiva.

Aunque fue la responsable de la fisión nuclear, un hito de la Ciencia Moderna, sólo su compañero Hahn recibió el Premio Nobel en 1944 por los hallazgos que realizaron juntos.

Gran parte de la comunidad científica, con Niels Bohr a la cabeza, protestaron por lo injusto de esa omisión.

Aunque Hahn minimizó la colaboración (crucial) de Lise, dió a Lise parte del dinero en efectivo de su Premio Nobel, que ella donó al Comité de Emergencia de Científicos Atómicos de Albert Einstein, que estaba promoviendo el uso pacífico de la energía nuclear.

Al acabar la guerra, su trabajo quedó en el olvido. Dió conferencias y siguió trabajando en Estocolmo hasta que se jubiló en 1953.

Finalmente su aporte a la Ciencia fué reconocido, entre otros, por las medallas Max Planck, la Wilhelm Exner, y la Dorothea Schlözer de Göttingen. Es la única mujer que tiene un elemento en la tabla periódica en su honor, el Meitnerio. Murió en 1968. De ella dijo Einstein, "Es la María Curie alemana".

Sobre su lápida se lee: "Lise Meitner: una Física que nunca perdió su Humanidad”.

La química y la física se superponen en el nivel en el que se llevan a cabo las investigaciones de las partículas más pequeñas de la materia. Por lo tanto, fue apropiado que Otto Hahn, Lise Meitner y Fritz Strassmann se unieran para combinar su experiencia en ambos campos.

Carrera temprana de Otto Hahn
Con un doctorado en mano de la Universidad de Marburg en Alemania, Hahn (1879–1968) tenía la intención de hacer carrera como químico industrial en una empresa con conexiones comerciales internacionales. Viajó a Inglaterra para mejorar sus habilidades en el idioma inglés y encontró un trabajo como asistente en el laboratorio de William Ramsay en el University College de Londres. Hahn demostró rápidamente su gran habilidad como experimentador al aislar torio radiactivo. Después de trabajar con Ernest Rutherford en Montreal, se unió al instituto de Emil Fischer en la Universidad de Berlín, donde ascendió en la facultad.

Colección Conmemorativa Edgar Fahs Smith, Centro Kislak de Colecciones Especiales, Libros Raros y Manuscritos, Universidad de Pensilvania, Hahn y Meitner colaboran

Hahn fue en busca de un colaborador con quien realizar estudios sobre radiactividad experimental y se asoció con Meitner (1878-1968). Había venido a Berlín para asistir a las conferencias de Max Planck sobre física teórica después de recibir su doctorado en física de la Universidad de Viena en 1905, el segundo doctorado en ciencias de esa universidad otorgado a una mujer. En el primer año de la asociación Hahn-Meitner tuvieron que trabajar en un taller de carpintería remodelado porque la universidad aún no aceptaba mujeres de manera oficial.

En 1912, su grupo de investigación se trasladó a la nueva Kaiser Wilhelm Gesellschaft, donde Fritz Haber fue director del instituto de química física, Hahn fue director del instituto de radiactividad y, desde 1918, Meitner fue directora del departamento de física del instituto de radiactividad. Durante la Primera Guerra Mundial, Hahn sirvió en el servicio de guerra de gas alemán encabezado por Haber, y Meitner se ofreció como enfermera de rayos X para el ejército austríaco.

Estudios en Radiactividad
Max-Planck-Gesellschaft, Múnich
El descubrimiento del neutrón por James Chadwick en 1932 dio un nuevo impulso a los estudios de radiactividad porque esta partícula atómica sin carga podía penetrar los secretos del núcleo atómico con mayor éxito.

Meitner, Hahn y otro químico, Strassmann (1902-1980), que había trabajado con los socios desde 1929, estuvieron profundamente involucrados en la identificación de los productos del bombardeo de neutrones de uranio y sus patrones de descomposición. En general, se esperaba que se produjeran elementos cercanos en número atómico, muy posiblemente elementos con números atómicos más altos que el uranio.

Fisión nuclear anunciada
En 1938 Meitner tuvo que abandonar Berlín porque los nazis se estaban acercando a todas las personas de ascendencia judía. Pronto encontró un entorno agradable para su investigación en el Instituto Nobel de Estocolmo. Su sobrino, el físico Otto Frisch, estaba ubicado en el instituto de Niels Bohr en Copenhague. Mientras tanto, Hahn y Strassmann descubrieron que inesperadamente habían producido bario, un elemento mucho más liviano que el uranio, y le informaron de ello a Meitner.

Ella y su sobrino elaboraron los cálculos físicos del fenómeno basándose en el modelo de "gota" del núcleo de Bohr y establecieron claramente que se había producido la fisión nuclear del uranio. Rápidamente se reconoció que el bario se encontraba entre los isótopos estables que eran los productos de la descomposición radiactiva de los elementos transuránicos que deben haberse formado inicialmente después del bombardeo de uranio con neutrones. Bohr llevó la noticia de la división del átomo y sus asombrosas posibilidades a los científicos de los Estados Unidos y, en última instancia, dio como resultado el Proyecto Manhattan.

Investigación nuclear posterior
Hahn, Meitner y Strassmann no participaron en la investigación de armas nucleares durante la Segunda Guerra Mundial. Al final de la guerra, Hahn se sorprendió al saber que había ganado el Premio Nobel de Química en 1944 y que se habían desarrollado bombas nucleares a partir de su descubrimiento básico. Más tarde, como director de Max-Planck-Gesellschaft (el sucesor de la posguerra del Kaiser Wilhelm Gesellschaft), se pronunció enérgicamente contra el mal uso de la energía atómica. Meitner, quien muchos pensaron que debería haber recibido el Premio Nobel con Hahn, continuó realizando investigaciones nucleares en Suecia y luego en Inglaterra. Strassmann fomentó el estudio de la química nuclear en Mainz, Alemania.

La carta Einstein-Szilárd (del inglés: Einstein–Szilard letter) fue una carta escrita por Leó Szilárd y firmada por Albert Einstein, enviada al Presidente de los Estados Unidos, Franklin Delano Roosevelt, el 2 de agosto de 1939.

domingo, 2 de febrero de 2020

Quiénes son los "marcianos" húngaros que ayudaron a Estados Unidos a convertirse en una potencia científica.

"¿Cómo es posible que muchos de los genios del Proyecto Manhattan vengan de un país que la mayoría ni siquiera puede ubicar en un mapa?", preguntó una noche uno de los integrantes del proyecto en un bar provincial en Estados Unidos.

Teller y Wigner

"Bueno, la verdad es que no son humanos: son marcianos", respondió uno de sus compañeros a modo de broma.

Así es como Marina von Neumann Whitman, hija de uno de esos "marcianos", relata la historia que habría dado origen al nombre.

"Y para disimular el hecho de que no son humanos hablan húngaro entre ellos mismos, una lengua que nadie puede entender", prosigue el relato la prominente escritora, autora del libro "The Martians' Daughter: A Memoir" (La hija del marciano: una autobiografía).

La historia se volvió viral y en la actualidad son muchos los intelectuales que han escrito obras en honor a estos genios cuya contribución al mundo de la ciencia y de la física fue inconmensurable.

Pero ¿quienes fueron estos "marcianos" y cómo ayudaron a Estados Unidos a convertirse en una potencia científica?

Leo Szilard.

Derechos de autor de la imagen GETTY
Leó Szilárd (segundo arriba de izquierda a derecha) tuvo una relación cercana con Albert Einstein.

5 genios con mucho en común

Se trata de un grupo de científicos que, escapando de los nazis alemanes y de los comunistas soviéticos, emigraron a Estados Unidos antes o durante la II Guerra Mundial.

"Eran cinco principalmente. Cuatro que trabajaban en el Proyecto Manhattan y un experto en misiles balísticos" le dice von Marina von Neumann Whitman a BBC Mundo.

Efectivamente, en el libro The Martians of Science, ("Los marcianos de la ciencia") el autor István Hargittai, también originario de Hungría, cuenta la historia de este grupo conformado por John von Neumann -padre de la autora del libro-, Theodore von Kármán, Edward Teller, Leó Szilárd y Eugene Wigner.

Eran 5 hombres provenientes de la élite de Budapest, capital del país europeo, criados en familias judías de clase media-alta, todos habían realizado al menos una parte de sus estudios en Alemania, eran políticamente activos y se oponían a todas las formas de totalitarismo.

Un legado incalculable

Hargittai cuenta que todos se hicieron amigos, trabajaron juntos y se influenciaron los unos a los otros hasta la muerte.

Y esta unión impulsó algunos de los desarrollos científicos más importantes del siglo XX.

John von Neumann, considerado como el matemático más destacado del grupo y uno de los más grandes de la historia, fue uno de los impulsores de la computadora moderna con el llamado modelo de von Neumann: una arquitectura de diseño para un computador digital electrónico que hasta el día de hoy es utilizada en casi todos los aparatos.

Eugene Paul Wigner recibió el Premio Nobel de Física en 1963 por "su contribución a la teoría del núcleo atómico y de las partículas elementales, en especial por el descubrimiento y aplicación de los importantes principios de simetría", explica la organización.

Theodore von Kármán
Theodore von Kármán (centro) fue uno de los pioneros de las investigaciones para el desarrollo de la aviación.

Nacido en 1881, Theodore von Kármán realizó importantes aportes en el campo de la aeronáutica y astronáutica y se convirtió en el primer director del Laboratorio de Propulsión a Reacción de la NASA, dándole una base científica a la Fuerza Aérea de los Estados Unidos (USAF, por sus siglas en inglés).

Leó Szilard, por su parte, contribuyó ampliamente en el campo de la física nuclear y la biología molecular y fue el autor de la famosa carta dirigida al expresidente Franklin D. Roosevelt en agosto de 1939 que impulsó el desarrollo de las bombas nucleares lanzadas sobre Hiroshima y Nagasaki seis años más tarde.

Por último, Edward Teller es considerado por muchos como el padre de la bomba de hidrógeno, también conocida como bomba termonuclear, que se ha convertido en una de las armas más destructivas de la historia.

Muchos marcianos, pero solo un gran beneficiado
Si bien las definiciones más estrictas solamente mencionan a 5 "marcianos húngaros", algunas incluyen en el grupo a otros genios como Paul Halmos, un destacado matemático que trabajó un par de años como asistente de John von Neumann, así como a George Pólya, Paul Erdős, el Premio Nobel de Física Dennis Gabory, John George Kemeny, entre otros.

Toda esta emigración tuvo un gran beneficiado: Estados Unidos.

El país logró atraer y nacionalizar a este grupo de genios y les dio herramientas para que desarrollaran al máximo sus capacidades en instituciones como la NASA.

Con esto, el pueblo estadounidense pudo atribuirse grandes desarrollos y descubrimientos físicos y científicos a mediados del siglo XX que ayudaron a la nación a convertirse en la potencia científica que es actualmente.

Von Neumann Whitman es de las que cree que, sin esa inmigración, "a EE.UU. le habría llevado mucho más tiempo desarrollarse científicamente y algunos descubrimientos tal vez no hubieran sucedido en lo absoluto".

La hija del marciano
Marina von Neumann Whitman reunida con el expresidente Richard Nixon, Barbara Franklin, Herbert Stein y George Shultz en la Oficina Oval de la Casa Blanca.

Derechos de autor de la imagen  BIBLIOTECAS PRESIDENCIALES DE EE.UU. Image caption

Marina von Neumann Whitman reunida con el expresidente Richard Nixon, Barbara Franklin, Herbert Stein y George Shultz en la Oficina Oval de la Casa Blanca - 29/01/1972.

Aunque Marina von Neumann Whitman no es considerada una "marciana", pues nació y se crió en EE.UU., tiene mucho en común con su padre y los amigos de este.

En diálogo con BBC Mundo, la también economista y profesora de la Universidad de Míchigan, califica su carrera como "pionera".

Y lo es: se trata de la primera mujer que sirvió en el Consejo de Asesores Económicos de la Casa Blanca, también trabajó como directora del Council on Foreign Relations (Consejo de Relaciones Exteriores en español) y ha recibido una larga lista de doctorados honoris causa.

"Una de las cosas de las que hablo en mi libro The Martian's Daughter es cómo cambió la actitud hacia las mujeres profesionales a lo largo de mi carrera, desde mediados de los 70 hasta finales del siglo XX".

Al hablar de su padre, la autora es modesta "creo que no estoy cualificada para hablar sobre sus logros más importantes, pero puedo decir que lo que más me marcó a mí fue su convicción de que todo el mundo tiene la obligación moral de hacer un uso completo de sus facultades intelectuales. Eso me inspiró".

John von Neumann

La mayoría reconocía a John von Neumann como el matemático más destacado del grupo. La autora recalca que si EE.UU. hubiera tenido una política anti-inmigratoria en el siglo pasado, nada de esto habría sido posible. También asegura que sin estas importaciones "no es muy seguro" que su país hubiera ganado la II Guerra Mundial y la Guerra Fría.

"Estos talentosos inmigrantes contribuyeron enormemente en el desarrollo de estrategias y armas para que EE.UU. se convirtiera también en una potencia militar".

Pero advierte que el enfoque de la política migratoria del actual presidente estadounidense Donald Trump pone en peligro la privilegiada posición de su país como una potencia científica.

"Si Trump es reelegido para un segundo mandato y mantiene esta actitud, pienso que esto podría tener un impacto negativo en el liderazgo científico estadounidense. Los chinos están trabajando duro para ponerse al día y a EE.UU. se le va a hacer muy difícil mantenerse a la vanguardia en este campo sin inmigración", concluye la hija del marciano.

https://www.bbc.com/mundo/noticias-51036722

jueves, 6 de noviembre de 2014

El uranio: el elemento más polémico

Cuando, en 1938, Otto Hahn junto a Fritz Strassmann (y Lise Meitner 1) descubrieron la increíble cantidad de energía que se podía liberar al dividir el átomo de uranio, abrió el camino para conseguir no sólo una fuente de electricidad potencialmente ilimitada, sino también para lograr la bomba atómica. Hoy, el potencial de este elemento nos sitúa en una nueva encrucijada, que divide a los ecologistas.

La ironía está en que los primeros usos del uranio ni siquiera alumbraban su increíble potencial.
En la mesa de laboratorio del departamento de Química del University College de Londres, el profesor Andrea Sella sitúa en fila varios objetos de cristal de un color verde amarillento, un salero y un vaso de vino.

Sella apaga las luces del laboratorio y enciende una bombilla ultravioleta.
De pronto, la fila de vasos se enciende con una misteriosa fluorescencia. El color y el brillo extraordinario es el resultado de las sales de uranio del vaso, explica.
Este fenómeno deleitaba y perturbaba por igual a los hombres de la época victoriana.
Pensaban, incluso algunos de los científicos que investigaban las propiedades del uranio, que los misteriosos colores y las luces eran indicios de un vínculo con el mundo sobrenatural.
Solo a finales del siglo XIX se descubrió que el uranio tenía, de hecho, propiedades de otro mundo.

Radioactividad
En 1896, Henri Becquerei descubrió que al colocar sales de uranio sobre una placa fotográfica, la placa se ennegrecía a causa de la radiación emitida por las sales de uranio. La radiación atravesaba papeles negros y sustancias opacas. Fue su estudiante doctoral Marie Curie la que llamó a esta propiedad "radioactividad", utilizando el prefijo "radio" de la palabra griega que denomina el rayo o el haz de luz.

Marie Curie
Fue Marie Curie la que le puso nombre a la "radioactividad".
La inestabilidad del átomo de uranio es la fuente de un misterioso poder.
El uranio, con 92 protones, es el elemento de mayor peso atómico de los que se encuentran en la naturaleza, y su núcleo sobredimensionado puede descomponerse, emitiendo partículas alfa: uniones de dos neutrones y dos protones.
Estas partículas son los núcleos de los átomos de helio, y es por la descomposición radioactiva del uranio y otros elementos inestables que existe el helio en el planeta Tierra.

Las partículas alfa salen despedidas del núcleo del uranio como la metralla de una explosión.
Estos misiles minúsculos viajan a una velocidad increíble, de 16.093 kilómetros por segundo.
En el contexto de las radiaciones no es muy peligroso: una hoja de papel es suficiente para proteger el cuerpo de la radiación alfa.
Pero cada vez que un elemento inestable como el uranio desprende una partícula de radiactividad, "decae", transformándose en otro elemento.
Así, el uranio se transforma en torio, que a su vez se convierte en protactinio, hasta que al final se convierte en plomo.

Riesgos para la salud
Estos elementos que decaen producen otras formas de radiación, beta y gamma, que puede penetrar el cuerpo humano, produciendo muchísimo daño.
Destrozan y matan las células, lo que produce envenenamiento por radiación.

Radiación
La radiación puede ser peligrosa para la salud.
También pueden interrumpir el funcionamiento de las células.

Aunque el cuerpo humano puede muchas veces repararse a sí mismo, las células dañadas proliferan de forma salvaje (lo que sucede en el cáncer) o provocar mutaciones genéticas que transmitimos a nuestros hijos.

Marie Curie nunca fue completamente consciente de los riesgos de la radiación para la salud. Al contrario, se dice que dormía con una brillante ampolla de isótopos radioactivos junto a la cama.
Pero ella y muchos de sus colegas murieron de enfermedades relacionadas con la exposición a la radiación.

La radiación puede ser peligrosa, pero cada vez que un átomo radioactivo dispara uno de esos misiles minúsculos, se genera un producto secundario potencialmente muy útil (además del helio): el calor.

Y el calor producido por el uranio todavía juega un papel crucial en dar forma al ambiente físico de nuestro mundo. Se estima que la desintegración del uranio y otros elementos radioactivos es la fuente de alrededor de la mitad del calor que existe en el interior de la Tierra. El resto proviene del proceso de formación del planeta.

Lo que esto significa es que el uranio y sus similares han dado forma a la Tierra tal y como la conocemos.
Su legado termal ayuda a las corrientes de convección energéticas que son la fuente del campo magnético terrestre, y también dirige el movimiento de las placas tectónicas que forman la superficie de la Tierra.
El movimiento tectónico ha esculpido las capas de Tierra en las que vivimos.

La capacidad de nuestra especie de liberar la energía de los átomos del uranio deriva de otra propiedad relacionada de este inseguro elemento.

Fisión
En  el final de la década de 1930, científicos descubrieron que si disparas un neutrón (una partícula subatómica sin carga) hacia algunos átomos del uranio, puedes dividirlos en dos, liberando enormes cantidades de energía en el proceso. Esto se llama fisión, de la forma latina "división".

La división del átomo representa un punto de inflexión en la historia, el primer paso para hacerse con una energía hasta ese momento inimaginable.

Las cosas evolucionaron rápido desde ese primer descubrimiento.

Planta nuclear
Las plantas nucleares cuentan con torres de refrigeración.
El mundo estaba al borde de una guerra y tanto los estadounidenses como los alemanes se dieron cuenta de que podría ser posible utilizar la fisión para crear nuevas y devastadoras bombas.
Esto es porque la fisión se puede utilizar para provocar una reacción nuclear en cadena.
Cada vez que se divide un átomo de uranio, libera tres neutrones que a su vez pueden dividir otros núcleos fisibles, liberando aún más neutrones…con consecuencias explosivas.
El reto para los científicos que intentaban desarrollar estas nuevas armas terroríficas era conseguir suficiente material fisible. Como en el caso de otros elementos, el uranio se presenta en formas levemente distintas conocidas como "isótopos", que se diferencian entre ellas en el número de neutrones del núcleo.

El uranio natural contiene una mezcla de dos isótopos principales. El más común con diferencia es el uranio-238 que no se divide fácilmente. Supone el 99,3% del uranio que se encuentra en la Tierra.
El restante 0,7% es el tipo fisible, el uranio-235.

Proyecto Manhattan
En 1942, un equipo estadounidense del Proyecto Manhattan liderado por el físico italiano Enrico Fermi, construyó el primer reactor nuclear en el suelo de una pista de squash en el campus de la universidad de Chicago.

Edward Teller
Edward Teller fue uno de los participantes en el Proyecto Manhattan liderado por Enrico Fermi.
Se le denominó "Chicago Pile-1" y Fermi lo utilizó para crear la primera reacción en cadena auto-sostenida.
Mostró que incluso el uranio natural, con una proporción muy baja de material fisible, podría utilizarse para crear una reacción en cadena. El truco estaba en usar el grafito como "moderador".

Los moderadores provocan reacciones en cadena con más facilidad al ralentizar a los neutrones, lo que hace más probable que puedan dividir otros núcleos.
Las bombas, sin embargo, no tienen nada que ver con la moderación.
Las reacciones nucleares incontroladas de las bombas atómicas requieren una elevada concentración de material fisible.
Pero separar el uranio-235 del uranio-238 es muy difícil. Químicamente son casi idénticos y tienen casi la misma masa.
Es posible utilizando centrifugadoras, pero la tecnología centrífuga estaba muy poco desarrollada.
El reactor nuclear de Fermi ofrecía una ruta alternativa hacia la bomba.
Cuando un neutrón golpea uno de los núcleos no fisibles del uranio-238, lo puede convertir en un nuevo elemento, el plutonio.

Destrucción mutua asegurada
Los núcleos de plutonio son fisibles y los primeros reactores nucleares del mundo se convirtieron en fábricas para convertir el uranio en plutonio para programas de construcción de bombas.

Bomba
Las bombas atómicas mataron a más de 150.000 personas.
El éxito del Proyecto Manhattan estuvo marcado de forma espeluznante por el lanzamiento de las dos bombas atómicas, una de uranio, la otra de plutonio.

Las bombas mataron a más de 150.000 personas y, pocos días después, los japoneses se habían rendido, poniendo fin a la segunda Guerra Mundial.
Lo que siguió fue un largo punto muerto. Durante décadas, el mundo se quedó atrapado por la Guerra Fría.
El conflicto se contuvo por la magnitud de las consecuencias en caso de que estallase.
Esto se llamó la doctrina de la "destrucción mutua asegurada", con la consecuencia de llevar a ambos bandos a desarrollar armas cada vez más terroríficas para asegurar un equilibrio de poder.
Pero, al mismo tiempo, la atención se dirigió hacia usos más pacíficos de la fisión nuclear.
Generar energía fue una ocurrencia tardía con los primeros reactores.
Estos reactores necesitaban ser enfriados, y utilizar el gas que los enfriaba para mover las turbinas era un buen acto de relaciones públicas.

Silencio
En la década de 1950, una nueva rama de investigación nuclear empezó a investigar la posibilidad de desarrollar reactores nucleares específicamente para generar electricidad.
Hoy, alrededor del 10% de la electricidad mundial se genera a partir de la fisión de átomos de uranio.
Las plantas nucleares están envueltas en un silencio que da miedo.

Planta nuclear
La energía nuclear tiene partidarios y detractores.
Lo único que se oye, incluso en la planta Sizewell B en la costa de Suffolk, es un leve zumbido.
"Aburrido está bien", dice Colin Tucker, encargado de la seguridad de la planta.
Pero el milagro diabólico en el centro de un reactor moderno está lejos de ser aburrido.
En el centro del reactor se dividen 1.000.000.000.000 (un trillón) de átomos cada segundo, dice Tucker.
Cada día, la reacción nuclear controlada en Sizewell B genera el calor equivalente a la energía de la bomba que destruyó Hiroshima multiplicada por tres.
Esa energía se guarda en dos piscinas con agua súper caliente atrapada bajo presión en un cilindro de acero.
Este es el aspecto del proceso que pone más la piel de gallina.
El director de la planta, Jim Crawford, me lleva a través de una serie interminable de pasillos acolchados con aluminio.
Alcanzamos una puerta de seguridad formidable donde me dice que presione un medidor de radiación Geiger.
Entro en un gran sarcófago de hormigón. Un diseñador de platós de Hollywood tendría dificultades para construir algo tan inquietante y ominoso.
Hay una valla que da a una piscina profunda. Las luces dentro del agua inusualmente azul iluminan el panel plateado. Esto es lo que se conoce como la piscina de combustible nuclear gastado.
Miro hacia el agua que está abajo.
"Estás observando parte del material más radioactivo del mundo", dice Crawford.

Una piscina olímpica
En esta piscina se guardan las barras de combustible de uranio gastado.
Como estas barras han estado expuestas a una reacción nuclear, muchos de los átomos de uranio-238 se han transformado en plutonio todavía más radioactivo.
Me sorprende lo pequeña que es: sobre 40 metros de largo y quizás unos 15 metros de ancho.

Piscina
El combustible utilizado en Sizewell cabe en una piscina olímpica.
Sizewell proporciona entre el 3% y el 4% de la electricidad del Reino Unido, y lleva en marcha casi dos décadas.
Pero todo el combustible utilizado en esos años cabe en una piscina olímpica.
Es el peligro que supone la energía nuclear y los deshechos que produce lo que ha provocado que la tecnología sea tan impopular en el mundo y lo que explica por qué, durante décadas, los ecologistas se opusieron de forma implacable.
Pero a medida que aumentan las evidencias sobre el cambio climático, el equilibrio del riesgo está cambiando.
El peligro de un desastre nuclear necesita sopesarse contra el consenso mayoritario de que las emisiones de efecto invernadero están provocando un cambio en el clima.
Fuente: BBC

1. Meitner, "no aria", Hahn, conocido por sus puntos de vista antinazi y Strassmann, el valiente joven que se negó a unirse al Partido Nazi o a cualquier organización afín, y que por lo tanto tenía todas las puertas cerradas fuera del Instituto.

No fue sino en marzo de 1938 (cuando se produjo la anexión de Austria por los nazis) que empezaron a propagarse rumores de que Lise Meitner (judía austriaca) podría perder su plaza y de que se le impediría salir de Alemania para proteger los secretos científicos. El 13 de julio de 1938, Meitner se escapo literalmente "de contrabando" con la ropa que traía puesta y unas cuantas monedas en el bolsillo. Logró llegar a Holanda gracias a sus amigos Dirk Coster y Adrian Fokker. Iba sin pasaporte ni papeles pero logró pasar después a Dinamarca y luego a Suecia, en donde Manne Siegbahn la acogió en el Instituto Nobel de Estocolmo. Ella fue la que alertó del experimento de fisión nuclear que despertaría los temores y la posibilidad de fabricar la bomba atómica.