La fórmula matemática acusada de destruir la economía mundial. Tim Hartford BBC
Algunos culpan a la ecuación Scholes-Black de precipitar la crisis económica global.
No todos los días ocurre que alguien formula una ecuación que puede transformar el mundo. Pero a veces sí ocurre, y el mundo no siempre cambia para bien. Algunos creen que la fórmula Black-Scholes y sus derivadas ayudó a generar el caos en el mundo financiero.
La fórmula se escribió por primera vez en los primeros años de la década de 1970, pero su historia comienza muchos años antes, en el mercado de arroz de Dojima en el siglo XVII en Japón, donde se escribían contratos de futuros para los comerciantes del arroz. Un contrato de futuros simple dice que una persona acordará comprar arroz de otra persona en un año, a un precio que acuerdan al momento de la firma.
En el siglo XX, la Bolsa de Comercio de Chicago era el lugar para que los comerciantes negociaran no sólo futuros sino contratos de opciones. Un ejemplo de esto último es un contrato en el que se acuerda comprar arroz en cualquier momento durante un año, a un precio convenido con la firma, pero que es opcional.
Es posible imaginarse por qué uno de estos contratos puede ser útil. Si alguien tiene una cadena grande de restaurantes de hamburguesas, pero no sabe cuánta carne necesitará comprar el próximo año -y está nervioso de que el precio pueda subir- entonces lo único que tiene que hacer es comprar unas opciones en carne.
Pero eso genera un problema: ¿Cuánto debería estar pagando por esas opciones? ¿Cuánto valen? Es precisamente ahí donde puede ayudar la fórmula revolucionaria Black-Scholes.
El precio de una hamburguesa
"El problema que trata de solucionar es definir el valor del derecho, pero no de la obligación, para comprar un activo particular a un precio específico, dentro de un periodo determinado o al final de él", dice Myron Scholes, profesor de finanzas de la Facultad de Negocios de la Universidad de Stanford, en Estados Unidos, y -por supuesto- coinventor de la fórmula Black-Scholes.
La llegada de los sistemas cuantitativos transformó a Wall Street.
Una parte del rompecabezas era la pregunta del riesgo: el valor de una opción para comprar carne a un precio, digamos, de US$2 por un kilo depende del precio de la carne y cómo ese precio se está moviendo.
Pero la conexión entre el precio de la carne y el valor de la opción de la carne no varía de una manera sencilla. Depende de lo probable que sea la utilización de la acción. Eso, a su vez, depende del precio de la opción y del precio de la carne. Todas las variables parecen estar enredadas de manera impenetrable.
Scholes trabajó en el problema con su colega, Fischer Black, y descubrió que si alguien tiene el portafolio de carne correcto, además de las opciones para comprar y vender carne, esa persona tiene un portafolio excelente y totalmente sin riesgos. Como ya conoce el precio de la carne y el precio de los activos libres de riesgo, si mira la diferencia entre ellos puede calcular el precio de esas opciones de carne. Esa es la idea básica. Los detalles son excesivamente complicados.
En la tienda de dulces
El método Black-Scholes resultó ser una forma no sólo para calcular el valor de las opciones sino también todo tipo de activos financieros.
"Éramos como niños en un almacén de dulces, en el sentido que describíamos opciones en todos lados, las opciones estaban presentes en todo lo que hacíamos en la vida", dice Scholes.
Pero Black y Scholes no eran los únicos niños en la tienda de dulces, dice Ian Stewart, cuyo libro argumenta que la Black-Scholes fue una invención peligrosa.
"Lo que hizo la ecuación fue darles a todos la confianza para comerciar con opciones y, de manera muy rápida, con unas opciones financieras mucho más complicadas, que se conocen como derivadas financieras", dice.
Pero a medida que los bancos y fondos de cobertura se basaron cada vez más en sus ecuaciones, se hicieron más y más vulnerables a los errores o simplificaciones en las matemáticas.
"La ecuación se basa en la idea de que los grandes movimientos son en realidad muy, muy raros. El problema es que los mercados reales tienen estos grandes cambios mucho más a menudo de lo que este modelo predice", dice Stewart. "Y el otro problema es que todo el mundo está siguiendo los mismos principios matemáticos, por lo que todos vamos a obtener la misma respuesta."
La llegada de los genios
¿La culpa fue de las matemáticas?
Ian Stewart afirma que la ecuación Black-Scholes cambió el mundo. ¿Pero realmente cree que las matemáticas causaron la crisis financiera?
"Fue el abuso de su ecuación lo que causó el problema, y yo no creo que se puede culpar a los inventores de una ecuación, si alguien viene y lo utiliza mal", dice.
Black-Scholes cambió la cultura de Wall Street, que pasó de ser un lugar donde las personas comerciaban con base en el sentido común, experiencia e intuición, a un lugar donde la computadora decía sí o no.
Pero en realidad, ¿es justo culpar a Black-Scholes por lo que siguió?
"La tecnología Black-Scholes tiene reglas y requisitos muy específicos”, dice Scholes.
"Esta tecnología atrajo o hizo que los bancos de inversión contrataran a personas que tenían habilidades cuantitativas o matemáticas. Eso lo acepto. A continuación, desarrollaron productos y tecnologías propias."
No todas las tecnologías posteriores, dice Scholes, eran lo suficientemente buenas. "[Algunas] tenía supuestos equivocados, o utilizaban datos de forma incorrecta para calibrar sus modelos, o las personas que utilizaban los modelos no sabían cómo hacerlo".
Scholes argumenta que no hay vuelta atrás. "La cuestión fundamental es que las tecnologías cuantitativas en las finanzas sobrevivirán y crecerán, y seguirán evolucionando con el tiempo", dice.
El trabajo de Scholes había inspirado a una generación de genios matemáticos de Wall Street, y en la década de 1990, él ya era un jugador en el mundo de las finanzas, como socio de un fondo de cobertura llamado Long-Term Capital Management.
"La idea de esta empresa era que iba a basar sus transacciones en principios matemáticos, tales como la ecuación de Black-Scholes. Y realmente fue un éxito sorprendente, al comienzo", dice Stewart. "Fue superando a las compañías tradicionales muy notablemente y todo se veía bien."
Pero no terminó bien. Long-Term Capital Management se encontró, entre otras cosas, con la crisis financiera rusa. La empresa perdió US$ 4 mil millones en el curso de seis semanas. Fue rescatada por un consorcio de bancos que habían sido reunidos por la Reserva Federal. Y -en el momento– se convirtió en una noticia muy, muy grande. Todo esto sucedía en agosto y septiembre de 1998, menos de un año después de Scholes había sido galardonado con el premio Nobel.
Lecciones
Stewart dice que las lecciones del caso Long-Term Capital Management son evidentes. "Se demostró la peligrosidad de este tipo de transacciones basadas en algoritmos si no se vigilaban algunos de los indicadores que las personas más convencionales utilizaban", dice. "Ellos [Long-Term Capital Management] se comprometieron a seguir adelante con el sistema que tenían. Y salió mal."
Scholes dice que eso no es lo que sucedió en absoluto. "No tuvo nada que ver con las ecuaciones y nada que ver con los modelos", dice. "Yo no estaba manejando la empresa, permítanme ser muy claro al respecto. No existía la capacidad para soportar el choque que se produjo en el mercado en el verano y otoño de finales de 1998. Así que fue sólo una cuestión de la asunción de riesgos. No fue una cuestión de modelos".
Esto es algo que la gente se sigue discutiendo una década después.
¿Fue el colapso de Long-Term Capital Management el fracaso de los métodos matemáticos para las finanzas o, como dice Scholes, fue simplemente un caso de operadores financieros que tomaron demasiado riesgo en contra de los mejores juicios de los expertos matemáticos?
Diez años después de Long-Term Capital Management, Lehman Brothers se derrumbó. Y el debate sobre Black-Scholes es ahora un debate más amplio sobre el papel de las ecuaciones matemáticas en las finanzas. BBC Sábado, 28 de abril de 2012.
MÁS SOBRE ALGORITMOS MATEMÁTICOS
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario