Mostrando entradas con la etiqueta Fisica. Mostrar todas las entradas
Mostrando entradas con la etiqueta Fisica. Mostrar todas las entradas

viernes, 1 de septiembre de 2023

Donna Strickland, Nobel de Física: “Es difícil ver el hilo que va desde las ecuaciones de Einstein hasta el GPS”.

Strickland, después de la entrevista este jueves en Madrid.Strickland, después de la entrevista este jueves en Madrid.

La investigadora, que se convirtió en 2018 en la tercera mujer de la historia galardonada en su disciplina, afirma que se puede hacer buena ciencia en cualquier sitio si se elige bien el objetivo.

Donna Strickland, (Guelph, Canadá, 64 años), ganó el premio Nobel de Física en 2018 por un trabajo de 1985 que ha mejorado la vista a millones de personas en el mundo. La técnica, creada cuando tenía 26 años junto a su director de tesis, Gérard Mourou, fue bautizada como Amplificación de Pulso Gorjeado (CPA, de sus siglas en inglés) y se convirtió pronto en el estándar para obtener láseres de alta intensidad. Esa tecnología, empleada en las cirugías para corregir la miopía, mostraba las enormes posibilidades de manipular la luz para actuar sobre la materia, aunque la científica explica que nunca investigó buscando una aplicación concreta.

Además de por su trabajo científico excepcional, Strickland se convirtió en un fenómeno al ser la tercera mujer en recibir el Nobel de Física en más de un siglo de historia. Sus predecesoras fueron la francesa Marie Curie en 1903 por sus estudios sobre la radiactividad, y la estadounidense de origen alemán Maria Goeppert-Mayer en 1963 por su trabajo sobre la estructura interna del núcleo de los átomos. Sobre esta última, Strickland asegura que “ni siquiera sabía que era una mujer” cuando la citó en su tesis, y se refirió a ella con un “él”.

Ahora, como referente para las mujeres, no cree que se deban cuestionar los avances hechos por los hombres blancos que han dominado la física, pero sí que lo imprevisible del origen de los nuevos hallazgos hace importante “no limitar el acceso a la ciencia a la mitad del mundo, porque se estará perdiendo la oportunidad de encontrar esas perlas inesperadas”. “Todo el mundo debería ser juzgado por su capacidad y nada más; cuanta más gente permitamos que participe en la ciencia, mejor estaremos”, ha afirmado durante una entrevista en la sede del Consejo Superior de Investigaciones Científicas (CSIC), en Madrid. Esta institución le ha entregado a Strickland la Medalla de Oro, su máxima distinción.

Pregunta. ¿Cómo se continúa investigando cuando se gana el Nobel, cuando se está en la cumbre de la ciencia?

Respuesta. No estaba lista para el premio y cambió mi vida. Es probable que me haya distraído de mi investigación, he dejado solos a mis alumnos en el laboratorio quizá más de lo que debería, y además soy la tercera mujer en ganar un Nobel. Me han invitado a hablar y a viajar mucho, incluso más que a los hombres. He tomado la responsabilidad de contar al público la importancia de la ciencia. Ya he dejado mi impronta en la ciencia y ahora me he convertido en una figura pública que la fomenta.

Tenemos que parar y encontrar formas diferentes de definir qué es un buen científico

P. ¿Tiene algún proyecto científico que le gustaría culminar?
R. Me sigue gustando jugar con láseres. Irónicamente, la semana antes de recibir el Nobel por la CPA, dejé todos mis láseres CPA y cambié a otro tipo de láser de fibra. Eso es nuevo para mí y me divertirá aprender. También me ha invitado un colega, Toshi Tajima, que es el inventor del láser de aceleración, para trabajar en un proyecto para acelerar electrones con los que podemos llegar endoscópicamente hasta un tumor y erradicarlo del todo, evitando que los cirujanos tengan que cortar demasiado profundo.

P. Hace unos siglos, vivíamos en un mundo en el que todo el mundo comprendía más o menos las tecnologías de su día a día. Ahora estamos muy lejos de entender lo más básico de las tecnologías que utilizamos, como el láser. ¿Podemos hacer algo para entender el mundo en que vivimos?
R. Creo que ni siquiera los científicos conocemos del todo nuestros propios campos, pero lo importante no es comprender cada campo de la ciencia, sino que el público entienda el proceso científico. Entender que tenemos que hacer investigación fundamental para que una generación después sea posible desarrollar nuevas técnicas.

Se puede hacer buena ciencia en cualquier sitio. Creo que mi Nobel muestra eso. Yo no publiqué en revistas de alto impacto” Sucedió con la pandemia. La gente se preguntaba por qué no se tenía una vacuna desde el primer momento y, después, se pensaba que la vacuna se había desarrollado demasiado rápido y que por eso no podía ser fiable. Pero la gente no era consciente de que había gente trabajando desde hacía décadas en esta idea del ARN mensajero y en todas las ideas que hicieron posibles las vacunas. Eso permitió ayudar con el covid en un año, una rapidez que nos dejó locos.

Si la gente entendiese el proceso, en el que hay mucha gente, no solo una persona, trabajando en un problema junto a otros y laboratorios de todo el mundo, tendría más confianza. Que sepan cómo los científicos aprendemos de otros y de nuestros errores. Porque este es otro punto de la pandemia: la incertidumbre. ¿Debemos llevar mascarilla o no? Era un experimento que estaba sucediendo delante de nuestros ojos. No sabíamos si el contagio era por gotículas o aerosoles, qué cantidad era necesaria. A cada paso aprendimos y cambiamos nuestras ideas y los científicos aceptamos esa forma de pensar, pero para el público era: estos tipos no saben lo que hacen, ¿por qué deberíamos escucharlos?

P. Sobre la confianza en la ciencia, en los últimos tiempos estamos viendo cómo proliferan las publicaciones irrelevantes, investigadores que publican cientos de artículos al año que no aportan nada, científicos que se encuentran entre los más citados y son un fraude.
R. Es desafortunado. Pienso que estamos empujando la ciencia por el camino equivocado. Tenemos que parar y encontrar formas diferentes de definir qué es un buen científico, y ver qué estamos haciendo mal. Pero creo que aún son casos raros que reciben mucha publicidad, porque a los medios y a todos nos atrae más lo negativo que lo positivo. También quiero señalar que en algunos casos eran los propios colegas los que se daban cuenta de un problema y retiraban sus propios artículos de las revistas. Nos autorregulamos. Pero tenemos que mejorar y quitarnos esta idea que publicas o mueres o que debes publicar en una determinada revista o ser citado tanto.

A mí no me sucedió, porque en mis tiempos teníamos que ir a una biblioteca y mirar un libro grande y gordo para ver si nos estaban citando o no. Había pocas referencias al final de cada artículo y no nos preocupaba tanto cuánto nos citaban. En esta era digital es muy fácil mirar esos datos: en cuántos artículos, en cuántas revistas de impacto y mirar el factor de impacto. Es fácil juzgar así y todos nos hemos lanzado a ello. Espero que podamos darnos cuenta y encontrar una forma mejor de evaluar.

No todos podemos subirnos al carro de lo grande y lo guay, porque perderemos esas pequeñas perlas que hay por ahí”

P. La creciente competitividad en la ciencia hace que requiera mucho dinero, muy buenos cerebros de todo el mundo y que, al final, la ciencia ultracompetitiva se haga en un puñado de sitios en el mundo.
R. Creo que eso no es cierto. Se puede hacer buena ciencia en cualquier sitio. Creo que mi Nobel muestra eso. Yo no publiqué en revistas de alto impacto y mis artículos no fueron muy citados en los dos primeros años y, al final, gané el premio Nobel. Estoy de acuerdo en que algunos sitios tienen mucho dinero y pueden atraer a la mejor gente, que después atraen a los mejores estudiantes y atraen financiación. Eso permite que hagan más cosas que en los lugares con menos recursos. Pero espero que no perdamos la capacidad de financiar a todo el mundo.

P. Usted viene de un campus no muy grande, como es de la Universidad de Waterloo, y de un país con una población similar a la que hay en España, y ha logrado un gran éxito. Me gustaría saber si tiene algún consejo para un país de tamaño mediano como España y sin tantos recursos. ¿Cuál es la forma de elegir qué tipo de investigaciones impulsar para producir resultados significativos?
R. La pregunta es, ¿qué significa resultados significativos? Mucha gente cae en la trampa de tener que hacer algo aplicable de alguna manera en dos años. Eso significa que solo hacemos investigación aplicada y después, dentro de 20 años, no tendremos las ideas fundamentales necesarias para avanzar. Necesitamos la relatividad general para tener el GPS y es difícil ver el hilo que va desde las ecuaciones de Einstein hasta el GPS.

"Lo importante no es comprender cada campo de la ciencia, sino que el público entienda el proceso científico”

Debemos defender ante nuestros gobiernos que se debe hacer investigación básica. Y también ser conscientes de que no todos podemos subirnos al carro de la cuántica o de la inteligencia artificial. No todos podemos subirnos al carro de lo grande y lo guay, porque perderemos esas pequeñas perlas que hay por ahí. Podemos dejar lo grande para los grandes países, y que los más pequeños busquen los grandes avances que pueden surgir en cualquier lado.

Corea del Sur ha pasado de país pobre a rico porque invirtió de verdad en la ciencia y me gustaría que países como España o Canadá miren ese ejemplo, porque Corea al final de su guerra en la década de 1950 era muy pobre. Ahora tienen grandes compañías como Samsung porque han invertido casi el 5% de su PIB en I+D. Y según crecen lo siguen incrementando, porque saben que la I+D expande la economía. Hacen investigación aplicada, pero también básica, y tienen un plan a largo plazo, no solo piensan en lo inmediato.

P. Recientemente, el Papa la ha fichado para la Pontificia Academia de las Ciencias del Vaticano, donde también están Jennifer Doudna o Emmanuelle Charpentier, galardonadas con el Nobel por su investigación sobre el sistema de edición genética CRISPR. ¿Cuál es su trabajo allí?
R. El Vaticano quiere saber lo que es la ciencia y tener un grupo con muchas voces, que vengan de todo el mundo, no solo de Italia o Europa, y están incluyendo a mujeres. No es necesario ser católica, yo no lo soy. Creo que este Papa en particular está bastante preocupado por el medio ambiente y es una de las cosas que quieren promover. Sienten su responsabilidad social y quieren entender de una manera amplia la ciencia y asegurarse de que la llevamos a cabo de forma ética.

P. ¿Siente que la ciencia, en su caso la comprensión de los fundamentos físicos del mundo, dan sentido a su vida o eso lo busca en otro lugar?
R. Para mí son dos cosas completamente separadas. En nuestra cabaña, miramos hacia el oeste, sobre un gran lago, y podemos ver unas puestas de sol preciosas. Y como experta en óptica, sé por qué el sol es rojo cuando se pone. Entiendo por qué el cielo es azul: porque las nubes dispersan la luz. Lo entiendo todo desde un punto de vista óptico. Pero cada noche, cuando veo ese bonito atardecer, doy gracias a Dios por dejarnos vivir en un universo hermoso. Creo que los científicos explican cómo funciona el universo, pero no creo que puedan explicar por qué se nos dio este universo. Y no importa si fue creado por Dios o simplemente ha estado siempre ahí. Eso es independiente de mi ciencia.

miércoles, 8 de febrero de 2023

Lise Meitner, una de las científicas más brillantes del siglo XX que no fue reconocida.

Esta es la historia de la única mujer que da nombre a un elemento en la tabla periódica: el meitnerio.

Lise Meitner nació en Viena en 1878 en el seno de una familia judía de clase media-alta. Su padre fue un prestigioso abogado. Desde pequeña se interesó por las matemáticas y la física. En la Universidad de Viena fue alumna de Ludwig Boltzmann, uno de los físicos más brillantes de todos los tiempos. Intentó trabajar con Marie Curie en París, pero no fue aceptada. Para poder mantenerse, daba clases en un colegio por las mañanas e investigaba por las tardes. A pesar de que ya había desarrollado sus primeras investigaciones, no estaba a gusto en Viena y vio que allí no podía seguir su carrera como científica. Con la ayuda de sus padres, se estableció en Berlín. En 1907 acudió a la Universidad Humboldt para seguir clases con otro gran físico, Max Planck. En aquella época las universidades de Prusia no admitían mujeres, pero ella fue una excepción. Para seguir investigando, se dirigió al Instituto de Física Experimental, donde el científico Otto Hahn mostró interés en investigar con ella. Debido a su condición de mujer, no tenía derecho a contrato ni a sueldo, ni siquiera podía utilizar el cuarto de baño de la institución, teniendo que ir a un restaurante cercano, y estaba obligada a acceder al edificio por una puerta trasera, para respetar las convenciones de solo hombres.

En 1912, Otto Hahn recibe una invitación para trasladarse al Instituto Kaiser Wilhelm de Física, que acepta y sigue contando con Meitner, pero como asistente sin sueldo. Finalmente fue contratada en el puesto más bajo del escalafón de investigadora. En el periodo entre las dos guerras mundiales, Lise Meitner y Otto Hahn descubrieron un elemento químico nuevo al que llamaron protactinio. En la década de los treinta, siguiendo las leyes raciales de Núremberg, Lise fue desposeída de todos sus cargos académicos por tener ascendencia judía, aunque esto no le impidió seguir investigando en Alemania.

Llegó un momento en que la situación para Meitner se hizo insostenible en Alemania, por lo que tuvo que escapar en una huida de película. En el plan para no ser apresada por los nazis participaron algunos de los físicos más famosos de la historia como Niels Bohr o Dirk Coster, descubridor del elemento químico hafnio, que se hizo pasar por su esposo para que pudiera salir de Alemania y cruzar la frontera hasta Holanda y de allí, vía Copenhague, recalar en Suecia.

Esto ocurrió a la vez que sucedían algunos de los descubrimientos más trascendentes. En 1938, Otto Hahn y Fritz Strassmann habían descubierto que bombardeando con neutrones diferentes átomos se formaban isótopos de átomos diferentes, algo que no podían explicar. Meitner y Hahn describieron, en un artículo publicado en la revista Nature en 1939, que lo que estaban viendo era la evidencia de que se estaba produciendo la fisión nuclear por la que unos átomos inestables se dividen en un proceso en el cual se libera energía. La fisión nuclear es la base de todo el armamento atómico y también de la energía nuclear. El problema es que el artículo solo lo firmó Otto Hahn, alegando que las autoridades no iban a dejar que lo rubricara una autora judía. Y que Lise Meitner no firmara el artículo, a pesar de haber realizado ella la investigación, fue el argumento esgrimido por la Comisión Nobel cuando en 1944 le otorgó el Premio Nobel a Otto Hahn en solitario por el descubrimiento de la fisión atómica. La realidad es que la interpretación de los resultados fue obra de Lise Meitner, aunque se quedó sin el galardón.

La aportación de Lise Meitner a la humanidad no acaba aquí. En 1942, cuando estaba exiliada en Suecia, le ofrecieron un visado para Estados Unidos e incorporarse al Proyecto Manhattan que estaba desarrollando la bomba atómica. Un trabajo que le habría facilitado la vida por alejarse de Europa, pero se negó en rotundo porque dijo que no quería participar en la fabricación de ninguna bomba, ya que eso iba en contra de sus principios. Al final llegó a Estados Unidos en 1946, donde el presidente Harry S. Truman, responsable en última instancia del lanzamiento de la primera bomba atómica, la recibió con todos los honores y fue nombrada mujer del año. A Hollywood no se le pasó por alto la historia de su huida y le ofrecieron rodar una película contando su historia. Se negó también, aseguró que nada de lo que iban a contar tenía sentido.

Reconocimiento póstumo
— La historia de Lise Meitner encierra una de las mayores injusticias cometidas por los premios Nobel. Fue nominada en numerosas ocasiones, pero nunca lo obtuvo. Como desagravio, fue invitada a participar en 1962 en la reunión de premios Nobel de Lindau. En 1997, años después de su fallecimiento el 27 de octubre de 1968, recibió uno de los mayores honores a los que puede aspirar un científico. El elemento químico 109 lleva su nombre. Dado que el número 96 —el curio— fue llamado así en honor de Pierre y Marie Curie, pero utilizando el apellido del marido, el meitnerio se convirtió en el único elemento de la tabla periódica bautizado con un nombre de mujer.

J. M. Mulet es catedrático de Biotecnología.

domingo, 21 de marzo de 2021

Maria Goeppert Mayer, la nobel de Física que explicó los "números mágicos" mientras investigaba sin que le pagaran.

Maria Goeppert Mayer se convirtió en profesora titular apenas a los 54 años.

"Voluntaria", "becaria", "investigadora asociada": esos fueron algunos de los títulos que Maria Goeppert Mayer recibió a lo largo de 30 años liderando investigaciones científicas que la llevarían a ganar el Nobel de Física en 1963.

En otras palabras, la física alemana trabajó la mayor parte de su carrera en distintas universidades estadounidenses sin que le pagaran un sueldo.

Investigaba "solo por el placer de hacer física", indica su biografía publicada por los premios Nobel.

Si bien en aquel entonces regían normas antinepotismo en Estados Unidos, lo cierto es que "ninguna universidad hubiese pensado en contratar a la esposa de un profesor", explica la academia sueca.

Era su marido, el químico estadounidense Joseph Mayer, quien conseguía los puestos de profesor e investigador de tiempo completo, mientras ella recibía las sobras. Literalmente.

Una de las universidades donde la pareja trabajó, la prestigiosa Johns Hopkins University, cuenta: "Ella había visto una oficina vacía y preguntó si podía usarla; se la negaron y, en su lugar, le dieron un salón en el ático".

Su historia, narrada en el marco del proyecto The Women of Hopkins, "es un ejemplo de determinación ante la presencia de obstáculos", reconoce la universidad.

Cuando Goeppert Mayer finalmente se convirtió en profesora titular tenía 54 años.

Séptima generación
Goeppert Mayer nació el 28 de junio de 1906 en Katowice, una ciudad que entonces formaba parte de Alemania, pero que hoy pertenece a Polonia.

Su padre era la sexta generación de académicos, por lo que siempre asumió que su única hija iría a la universidad y seguiría el legado familiar.

"Mi padre me decía: 'Cuando crezcas, no te conviertas en una mujer', en el sentido de ama de casa", contó Goeppert Mayer citada por los Nobel.

"Es una de esas mujeres que pelearon por sus objetivos cuando la sociedad exigía que se quedaran en casa", dice a BBC Mundo la física Louise Giansante.

Si bien en un principio su intención era graduarse en matemáticas, decidió estudiar física tras participar de un seminario sobre mecánica cuántica dictado por Max Born, uno de los padres de lo que entonces era una incipiente rama de la ciencia.

Born se terminaría convirtiendo en el mentor de Goeppert Mayer a lo largo de sus años de estudio en la Universidad de Gotinga, en Alemania.

Pero tras completar su doctorado, la joven se casó y mudó a Estados Unidos, en parte buscando mejores oportunidades académicas, y en parte para alejarse del movimiento político que culminaría con el ascenso al poder de Adolf Hitler.

De hecho, durante la Segunda Guerra Mundial, Goeppert Mayer terminaría trabajando en el Proyecto Manhattan, el programa secreto del gobierno estadounidense que desarrolló la bomba atómica.

Manhattan Project
"La urgencia de la Segunda Guerra Mundial llevó al gobierno de Estados Unidos a tratar la capacidad de Goeppert Mayer con más respeto que el mostrado por sus universidades más importantes", afirman los Nobel.

El 6 y 9 de agosto de 1945, Estados Unidos lanzó dos bombas atómicas sobre Hiroshima y Nagasaki, en Japón.

Ella incluso llegó a decir que, gracias al Proyecto Manhattan, por primera vez en su carrera logró "pararse" por sí misma como científica, sin "sostenerse" en su marido.

Sus biógrafos coinciden en que, aunque disfrutaba del respeto que recibió de sus colegas y de las responsabilidades que le fueron dando durante esos 3 años de trabajo, ella albergaba la esperanza de que el proyecto fracasara.

Según los Nobel, Goeppert Mayer era "vehementemente anti-Hitler, pero consciente de que el arma que estaba ayudando a crear podría usarse contra amigos y familiares que vivían en Alemania".

Y aunque la bomba sí fue desarrollada y usada sobre las ciudades japonesas de Hiroshima y Nagasaki, matando a decenas de miles de personas, las investigaciones lideradas por ella efectivamente no tuvieron éxito.

"No encontramos nada y tuvimos suerte... escapamos de la punzante culpa que sienten hasta el día de hoy los responsables de la bomba", reconocería luego, según los Nobel.

Los "números mágicos"
Fue después de la guerra cuando Goeppert Mayer comenzó a trabajar en física nuclear, la línea de trabajo que la llevaría a definir la estructura del núcleo atómico y ganar el Nobel.

Cuando Goeppert Mayer ganó el Nobel de Física en 1963 se convirtió en la segunda mujer de la historia en recibirlo.

Sin entrar en muchos tecnicismos, lo que la científica logró demostrar una y otra vez es que los núcleos más estables siempre tenían una determinada cantidad de neutrones o protones. Los "números mágicos" eran 2, 8, 20, 28, 50, 82 o 126.

Pero no se conformó con ello: ahora que sabía que eran números especiales, quería saber el por qué.

Fue así que comenzó a desarrollar lo que ahora es el famoso modelo de capas nucleares.

De acuerdo con un artículo de 2008 de la Sociedad Estadounidense de Física (APS), "el hecho de que los núcleos con cierto número de nucleones (neutrones y protones) eran especialmente estables ya había sido advertido antes, pero los físicos estaban seguros de que un modelo de capas no podía ser correcto".

Es que en aquel entonces prevalecía otro modelo creado nada menos que por Niels Bohr, quien había ganado el Nobel por sus investigaciones sobre la estructura de los átomos.

Según la APS, Goeppert Mayer "tenía una formación menos formal en física nuclear, (entonces) estaba menos sesgada".

Su colega y amigo Edward Teller lo resumiría de una forma más elocuente: "Se le ocurrió la idea absurda de oponerse al modelo del núcleo atómico de Bohr. Fui rotundo en mi crítica. Pero resultó ser que Maria tenía razón y, merecidamente, recibió el premio Nobel".

Una de cuatro
Goeppert Mayer no fue la única capaz de pensar afuera de la caja respecto a la estructura del núcleo atómico.

Cuando estaba por enviar su investigación a la revista Physical Review se enteró de que otro equipo liderado por un tal Hans Jensen había llegado a la misma conclusión en su Alemania natal.

"Pidió que su artículo fuese retrasado para salir publicado en el mismo número que el de ellos, pero el de ella terminó siendo publicado en el número posterior al de ellos, en junio de 1949", cuenta el citado artículo de la APS.

Tiempo después Goeppert Mayer y Jensen se conocieron, convirtiéndose en amigos y colaboradores. Publicaron juntos un libro sobre el modelo de capas nucleares y en 1963 compartieron el Nobel.

En ese entonces solo una mujer en la historia había recibido el Nobel de Física: Marie Curie, 60 años antes.

Marie Curie fue la primera persona en recibir dos premios Nobel en distintas especialidades, física y química, en 1903 y 1911 respectivamente.

Tendrían que pasar otros 55 años para que otra mujer, Donna Strickland, lo volviese a ganar en 2018. La cuarta y última física en obtenerlo fue Andrea Ghez el año pasado.

El legado
En 1960, poco después de llegar a San Diego para empezar a desempeñarse en su primer trabajo como profesora titular en la Universidad de California, Goeppert Mayer sufrió un ataque cardíaco.

Su salud continuaría siendo delicada desde entonces hasta su muerte, en 1972, pero aún así no dejó de investigar y dictar clases.

"Es una de esas mujeres que pelearon por sus objetivos cuando la sociedad exigía que se quedaran en casa", le dice a BBC Mundo la física Louise Giansante, autora principal del artículo "Mujeres en la física: pioneras que nos inspiran" publicado en 2018 en la revista de la Organización Internacional de Física Médica.

"Enfrentó una serie de desafíos en su vida profesional y personal", continúa, "lo que incluyó guerras y muertes, pero también simplemente criar a sus hijos y ser esposa mientras intentaba continuar con sus investigaciones".

"Sus descubrimientos y destacada contribución en gran medida se utilizan hasta el día de hoy. Creo que su historia necesita ser contada y puede servir de inspiración especialmente para las mujeres jóvenes, que todavía tienen que enfrentar numerosos desafíos", concluye Giansante, sobre el legado de la física alemana.

https://www.bbc.com/mundo/noticias-56286955