Mostrando entradas con la etiqueta niño prodigio. Mostrar todas las entradas
Mostrando entradas con la etiqueta niño prodigio. Mostrar todas las entradas

domingo, 1 de diciembre de 2019

Lev Landáu, el niño prodigio ruso referente mundial de la Física

Empezó la universidad con 14 años y sus investigaciones y descubrimientos sobre todas las ramas de la Física Teórica le hicieron merecedor del Premio Nobel en 1962

Recordado por sus compañeros de colegio como un chico tímido e introvertido, Lev Landáu creció con una compañera que se volvió inseparable en su vida: las matemáticas. Lejos de sentirse traumatizado por su soledad en la infancia, de adulto reconoció que le costaba pensar en algún momento de niño en el que no hubiera estado familiarizado con el cálculo infinitesimal.

Y es que Lev nació en un terreno abonado para la ciencia, con un padre ingeniero de la industria petrolera y una madre doctora en Medicina. Él se convirtió en un niño prodigio y contribuyó a la saga de grandes científicos y premios Nobel de la antigua Unión Soviética con un currículo inmaculado que lo llevó a la universidad con solo 14 años y a publicar su primer trabajo de investigación a los 18.

La posibilidad de viajar y aprender en los institutos científicos y en las universidades más prestigiosas del mundo hicieron el resto, hasta convertir a Lev Landáu en una figura clave de la Física Teórica del siglo XX y en uno de los mejores científicos de la historia. Sus investigaciones, pero sobre todo sus descubrimientos, lo llevaron a recibir el Premio Nobel de Física en 1962 por su teoría matemática sobre el comportamiento del helio superfluido a temperaturas cercanas al cero absoluto.

Lev Davídovich Landáu nació el 22 de enero de 1908, en Bakú, actual capital de Azerbaiyán y en aquel tiempo perteneciente al Imperio Ruso.

Acabó sus estudios de Secundaria con 13 años, pero tuvo que esperar uno más para acceder a la universidad, donde se matriculó simultáneamente en dos facultades: la de Ciencias Físicas y Matemáticas y la de Química. En 1924 se trasladó a la Universidad Estatal de Leningrado, considerada el centro de la Física soviética y, tras graduarse en 1927, se dedicó a la investigación en el Instituto Físico Técnico de Leningrado.

Landáu obtuvo una beca Rockefeller complementada con otra del Gobierno soviético con las que pudo visitar centros de investigación en Zúrich, Cambridge y Copenhague. Sus viajes le permitieron estudiar con el premio nobel Niels Bohr, que ejerció una gran influencia en el joven físico, y conversar con Albert Einstein.

De regreso a la Unión Soviética, Landáu fue jefe del Departamento de Teoría del Instituto Físico-Técnico de Ucrania en Kharkov entre 1932 y 1937, y después jefe del Departamento de Teoría del Instituto de Problemas Físicos de la Academia de Ciencias de la URSS en Moscú, cargo que compaginó con la enseñanza de Física Teórica.

Por motivos ideológicos, Landáu se vio forzado a abandonar Ucrania en 1937 y fue arrestado por el KGB y condenado a 10 años de prisión. La amistad con otros científicos cercanos al Gobierno le permitieron salir en libertad un año después, si bien después se demostró que fue un antiguo alumno suyo quien, por venganza, lo denunció de manera falsa como espía alemán.

A partir de ese momento sus escritos sobre materias relacionadas con la investigación de los fenómenos físicos incluyen alrededor de cien artículos y numerosos libros, entre los que se encuentra el ampliamente conocido Curso de Física Teórica, que contiene nueve tomos, y que fue publicado en 1943 junto al también científico ruso Yevgueni Mijáilovich Lifshitz.

Entre las aportaciones realizadas por Landáu a la ciencia están la teoría termodinámica de las transiciones de fase de segundo grado; la teoría macroscópica de la superfluidez del helio líquido -lo que valió el Premio Nobel de Física en 1962-; la teoría de los aludes de las tormentas electrónicas; la teoría de la turbulencia y la física de las bajas temperaturas, la teoría del plasma, la energía de las estrellas, el neutrino, la teoría cuántica, así como el descubrimiento de las estrellas de neutrones.

La URSS inició un proyecto de investigación cuyo objetivo era la construcción de la bomba atómica, algo que se aceleró a partir de la tragedia de Hiroshima. Landáu participó en el proyecto como matemático calculando las ecuaciones de la dinámica de la bomba termonuclear. En 1958 se hicieron públicos parte de esos trabajos, mostrando aspectos novedosos como la superconductividad, la física de partículas elementales y ruptura de simetría.

Además del Premio Nobel recibió otros reconocimientos, como tres premios de Estado, ser denominado Héroe del Trabajo y un Premio Lenin, todos ellos en la Unión Soviética. Fuera de las fronteras de la antigua URSS fue miembro de la Royal Society de Londres, Medalla Max Planck, premio Fritz London de la Real Academia de Ciencias de Dinamarca, de la Real Academia de Ciencias de los Países Bajos, Asociado en el Extranjero de la Academia Nacional de Ciencias de los Estados Unidos, Miembro Honorario de la Academia Americana de Artes y Ciencias, de la Sociedad Física (Londres), y de la Sociedad Física de Francia.

El 7 de enero de 1962 Lev Landáu sufrió un accidente de coche al chocar contra un camión cuando conducía su pequeño automóvil. A partir de ese momento no volvió a ser el mismo e incluso estuvo en varias ocasiones al borde de la muerte. Se retiró de sus investigaciones aunque de vez en cuando siguió visitando el instituto de investigación. Murió en Moscú el 1 de abril de 1968, a los 60 años, y fue enterrado en el cementerio Novodévichi, el más céntrico y famoso de la capital rusa, que forma parte del monasterio del siglo XVI que lo alberga y que fue declarado Patrimonio de la Humanidad por la Unesco en 2004.

El reconocimiento a su trascendental legado científico va más allá de sus investigaciones, teorías y descubrimientos, ya que Lev Landáu tiene un cráter en la Luna con su nombre y el asteroide 2142 también lo recuerda, llamándose Landáu en homenaje al físico ruso.

https://elpais.com/elpais/2019/01/22/ciencia/1548144054_106966.html

martes, 12 de junio de 2018

_- Johann Carl Friedrich Gauss, el niño prodigio que supo de todas las matemáticas. Su curiosidad y capacidad de aprendizaje le permitieron realizar también grandes contribuciones a la astronomía, la óptica, la electricidad, el magnetismo, la estadística y la topografía.

_- El genio hecho a sí mismo. Johann Carl Friedrich Gauss fue un niño prodigio que nació en una familia humilde y de padres analfabetos pero que fue autodidacta para aprender a leer y llegar a ser conocido como “el príncipe de los matemáticos” y reconocido por sus coetáneos como el “matemático más grande desde la antigüedad”. Así de simple es la definición de Carl Friedrich Gauss, que comparte el olimpo de los elegidos en las ciencias con Arquímedes, Newton, Euler… y pocos más.

Gauss fue matemático, astrónomo, geodesta y físico alemán que contribuyó significativamente en muchos campos, incluida la teoría de los números, el análisis matemático, la geometría diferencial, la estadística, el álgebra, la geodesia, el magnetismo y la óptica.

Su influencia fue notable en muchos campos de la matemática y de la ciencia y sus teorías continúan vigentes en la actualidad. De hecho, fue de los primeros en extender el concepto de divisibilidad a otros conjuntos y posiblemente la teoría de números sea la rama de las matemáticas en la que la influencia ejercida por Gauss haya sido mayor, aunque ni mucho menos la única.

Su nombre completo es Johann Carl Friedrich Gauss y nació un 30 de abril de 1777 en Brunswick, Alemania. La prodigiosidad de Gauss en su niñez, en lo que se refiere a las matemáticas en general, y al cálculo en particular, quedó patente a los 3 años cuando corrigió a su padre una operación que estaba realizando relacionada con pagos de salarios a los trabajadores que tenía a su cargo. Sin embargo, la anécdota más conocida de su infancia ocurrió en el colegio cuando tenía 7 años. El profesor castigó a toda la clase con sumar todos los números naturales desde el 1 hasta el 100 y casi de forma instantánea Gauss tenía la respuesta correcta: 5.050.

Los profesores de Gauss vieron en él un don para las matemáticas, así que hablaron con sus padres para que recibiera clases complementarias. Cuando apenas tenía 10 años Johann Carl Friedrich Gauss ya había descubierto dos métodos para calcular raíces cuadradas de números de 50 cifras decimales y hasta encontró pequeños errores en tablas logarítmicas que cayeron en sus manos.

Fue recomendado al duque de Brunswick por sus profesores y éste le subvencionó sus estudios secundarios y universitarios. Con 11 años ingresó en la escuela secundaria, donde aprendió, sobre todo, cultura clásica. No descuidó, sin embargo, su formación matemática, que continuó con clases particulares y la lectura de libros. Allí conoció al matemático Martin Bartels, que fue su profesor. Ambos estudiaron juntos, se apoyaron y se ayudaron para descifrar y entender los manuales que tenían sobre álgebra y análisis elemental.

A pesar de su juventud, Johann Carl Friedrich Gauss ya había descubierto la ley de los mínimos cuadrados, lo que indica su temprano interés por la teoría de errores de observación y su distribución. A los 17 tuvo sus primeras ideas intuitivas sobre la posibilidad de otro tipo de geometría y a los 18 años dedicó sus esfuerzos a completar lo que, a su juicio, habían dejado sin concluir sus predecesores en materia de teoría de números. Así, descubrió su pasión por la aritmética, área en la que poco después tuvo sus primeros éxitos. Su gusto por la aritmética prevaleció por toda su vida, ya que para él “la matemática es la reina de las ciencias y la aritmética es la reina de las matemáticas”.

Nadie dudaba de que Gauss en ese momento ya tenía suficientes conocimientos como para haberse graduado, así que en 1795 dejó el centro habiendo hecho tantas matemáticas como para terminar una carrera, pero lo hizo para ingresar en la Universidad de Göttingen, posiblemente por la gran biblioteca matemática que poseía.

Su primer gran resultado en 1796 fue la demostración de que se puede construir un heptadecágono, un polígono regular de 17 lados, con regla y compás en el sentido clásico de este tipo de construcciones. En solo seis meses, Gauss resolvió un problema que matemáticos habían intentado solucionar durante 2.000 años. Los antiguos griegos habían demostrado que los polígonos regulares de 3, 5 y 15 lados pueden construirse utilizando solo una regla y una compás, pero no han podido descubrir más formas de este tipo. Pero Gauss fue incluso más allá del heptadecágono. Descubrió una fórmula matemática para encontrar todos los polígonos regulares que pueden construirse usando solamente regla y compás, y encontró 31. Gauss estaba tan orgulloso de la demostración de este resultado que decidió estudiar Matemáticas.

Como anécdota, Johann Carl Friedrich Gauss mantuvo un diario de sus descubrimientos, comenzando con el heptadecágono. El diario, que enumera 146 descubrimientos, estuvo perdido durante más de 40 años después de su muerte.

Estando todavía en la universidad Gauss realizó otros importantes descubrimientos, entre los que destacan la aritmética modular, que sirvió para unificar la teoría de números; la ley de reciprocidad cuadrática, enunciada pero no demostrada completamente por Legendre unos años antes, y también que todo número entero positivo puede expresarse como suma de como mucho tres números triangulares.

Dos años tan intensos en Göttingen le bastaron para darse cuenta de que ya nadie podía hacerle avanzar allí, por lo que regresó a su casa en Brunswick para escribir su tesis doctoral. Una investigación que presentó en 1799 y que versó sobre el teorema fundamental del álgebra, que establece que toda ecuación algebraica de coeficientes complejos tiene soluciones igualmente complejas.

En 1801 Gauss publicó las Disquisiciones aritméticas, una obra destinada a influir de forma decisiva en la conformación de las matemáticas y en especial en el ámbito de la teoría de números. En esa obra destacan los siguientes hallazgos: la primera prueba de la ley de la reciprocidad cuadrática; una solución algebraica al problema de cómo determinar si un polígono regular de ‘n’ lados puede ser construido de manera geométrica; un tratamiento exhaustivo de la teoría de los números congruentes; y numerosos resultados con números y funciones de variable compleja que marcaron el punto de partida de la moderna teoría de los números algebraicos.

Cuando fue capaz de predecir con exactitud el comportamiento orbital del asteroide ‘Ceres’, avistado por primera vez pocos meses antes, su fama creció de forma exponencial. Para lograrlo empleó el método de los mínimos cuadrados que él mismo desarrolló en 1794 y que en la actualidad continúa siendo la base computacional de estimación astronómica.

En 1807 aceptó el puesto de profesor de Astronomía en el Observatorio de Göttingen, cargo en el que permaneció durante el resto de su vida. Tal vez lo hizo porque un año antes falleció el duque de Brunswick y con él también acabó el apoyo financiero a Gauss. El científico tomó su nuevo trabajo de astronomía en serio, utilizando regularmente su telescopio para observar el cielo nocturno, e hizo varias mejoras prácticas a los instrumentos astronómicos y supervisó la construcción de un nuevo observatorio.

En esos años Johann Carl Friedrich Gauss maduró sus ideas sobre la construcción de una geometría lógicamente coherente que prescindiera del postulado de Euclides de las paralelas y con la que se adelantó en más de treinta años a los trabajos posteriores de Lobachevskiy y Bolyai.

En esos años, su esposa, con quien había contraído matrimonio en 1805, falleció al dar a luz a su tercer hijo; y más tarde se casó en segundas nupcias y tuvo tres hijos más.

En 1820, ocupado en la determinación matemática de la forma y el tamaño del globo terráqueo, Gauss desarrolló numerosas herramientas para el tratamiento de los datos observacionales. Entre ellas destaca la curva de distribución de errores que lleva su nombre, conocida también con el apelativo de distribución normal y que constituye uno de los pilares de la estadística.

Otros resultados relacionados con su interés por la geodesia son la invención del heliotropo, y, en el campo de la matemática pura, sus ideas sobre el estudio de las características de las superficies curvas que, desarrolladas en su obra Disquisitiones generales circa superficies curvas (1828), sentaron las bases de la moderna geometría diferencial.

También prestó atención al fenómeno del magnetismo, que culminó con la instalación del primer telégrafo eléctrico (1833). En 1835 Gauss formuló la ley o teorema de Gauss. Esta ley fue una de sus contribuciones más importantes en el campo del electromagnetismo, y de ella derivarían dos de las cuatro ecuaciones de Maxwell.

Otras áreas de la física que Gauss estudió fueron la mecánica, la acústica, la capilaridad y, muy especialmente, la óptica, sobre la que publicó el tratado Investigaciones dióptricas (1841), en las que demostró que un sistema de lentes cualquiera es siempre reducible a una sola lente con las características adecuadas.

Posiblemente fue la última aportación fundamental de Johann Carl Friedrich Gauss, un científico cuya profundidad de análisis, amplitud de intereses y rigor de tratamiento le merecieron en vida el apelativo de “príncipe de los matemáticos” y que fue tan reconocido que los últimos billetes de 10 marcos en Alemania, antes de la entrada del euro tenían su efigie.

Gauss fue un perfeccionista, hasta el punto de que solo publicó obras que creía eran perfectas. Muchos de los avances significativos que descubrió permanecieron inéditos hasta después de su muerte, como bastante oculta fue siempre su capacidad docente, al pensar que los alumnos no estaban lo suficientemente preparados, si bien hasta eso cambió a lo largo de su vida y se convirtió en un imán de talentos en la universidad de Göttingen, ciudad en la que falleció mientras dormía el 23 de febrero de 1855. Tenía 77 años.

Fue enterrado en el cementerio Albanifriedhof de Göttingen, cerca de la universidad. En sus últimos años, Gauss seguía estando tan orgulloso de su logro juvenil del heptadecágono que pidió que fuera tallado en su lápida, al igual que Arquímedes tenía una esfera dentro de un cilindro tallado en el suyo. Por desgracia, su deseo no se cumplió, ya que el cantero dijo que sería demasiado difícil esculpir un heptadecágono que no se pareciera a un círculo.

Carl Friedrich Gauss fue un hombre bondadoso, que odiaba viajar y que solo dejó Göttingen una vez en 48 años para asistir a una conferencia en Berlín. Era un apasionado de la literatura y de la recopilación de datos, con una biblioteca personal provista de 6.000 libros escritos en los idiomas que había dominado incluyendo danés, inglés, francés, griego, latín, ruso y su alemán nativo.

https://elpais.com/elpais/2018/04/30/ciencia/1525069233_387473.html