_- El genio hecho a sí mismo. Johann Carl Friedrich Gauss fue un niño prodigio que nació en una familia humilde y de padres analfabetos pero que fue autodidacta para aprender a leer y llegar a ser conocido como “el príncipe de los matemáticos” y reconocido por sus coetáneos como el “matemático más grande desde la antigüedad”. Así de simple es la definición de Carl Friedrich Gauss, que comparte el olimpo de los elegidos en las ciencias con Arquímedes, Newton, Euler… y pocos más.
Gauss fue matemático, astrónomo, geodesta y físico alemán que contribuyó significativamente en muchos campos, incluida la teoría de los números, el análisis matemático, la geometría diferencial, la estadística, el álgebra, la geodesia, el magnetismo y la óptica.
Su influencia fue notable en muchos campos de la matemática y de la ciencia y sus teorías continúan vigentes en la actualidad. De hecho, fue de los primeros en extender el concepto de divisibilidad a otros conjuntos y posiblemente la teoría de números sea la rama de las matemáticas en la que la influencia ejercida por Gauss haya sido mayor, aunque ni mucho menos la única.
Su nombre completo es Johann Carl Friedrich Gauss y nació un 30 de abril de 1777 en Brunswick, Alemania. La prodigiosidad de Gauss en su niñez, en lo que se refiere a las matemáticas en general, y al cálculo en particular, quedó patente a los 3 años cuando corrigió a su padre una operación que estaba realizando relacionada con pagos de salarios a los trabajadores que tenía a su cargo. Sin embargo, la anécdota más conocida de su infancia ocurrió en el colegio cuando tenía 7 años. El profesor castigó a toda la clase con sumar todos los números naturales desde el 1 hasta el 100 y casi de forma instantánea Gauss tenía la respuesta correcta: 5.050.
Los profesores de Gauss vieron en él un don para las matemáticas, así que hablaron con sus padres para que recibiera clases complementarias. Cuando apenas tenía 10 años Johann Carl Friedrich Gauss ya había descubierto dos métodos para calcular raíces cuadradas de números de 50 cifras decimales y hasta encontró pequeños errores en tablas logarítmicas que cayeron en sus manos.
Fue recomendado al duque de Brunswick por sus profesores y éste le subvencionó sus estudios secundarios y universitarios. Con 11 años ingresó en la escuela secundaria, donde aprendió, sobre todo, cultura clásica. No descuidó, sin embargo, su formación matemática, que continuó con clases particulares y la lectura de libros. Allí conoció al matemático Martin Bartels, que fue su profesor. Ambos estudiaron juntos, se apoyaron y se ayudaron para descifrar y entender los manuales que tenían sobre álgebra y análisis elemental.
A pesar de su juventud, Johann Carl Friedrich Gauss ya había descubierto la ley de los mínimos cuadrados, lo que indica su temprano interés por la teoría de errores de observación y su distribución. A los 17 tuvo sus primeras ideas intuitivas sobre la posibilidad de otro tipo de geometría y a los 18 años dedicó sus esfuerzos a completar lo que, a su juicio, habían dejado sin concluir sus predecesores en materia de teoría de números. Así, descubrió su pasión por la aritmética, área en la que poco después tuvo sus primeros éxitos. Su gusto por la aritmética prevaleció por toda su vida, ya que para él “la matemática es la reina de las ciencias y la aritmética es la reina de las matemáticas”.
Nadie dudaba de que Gauss en ese momento ya tenía suficientes conocimientos como para haberse graduado, así que en 1795 dejó el centro habiendo hecho tantas matemáticas como para terminar una carrera, pero lo hizo para ingresar en la Universidad de Göttingen, posiblemente por la gran biblioteca matemática que poseía.
Su primer gran resultado en 1796 fue la demostración de que se puede construir un heptadecágono, un polígono regular de 17 lados, con regla y compás en el sentido clásico de este tipo de construcciones. En solo seis meses, Gauss resolvió un problema que matemáticos habían intentado solucionar durante 2.000 años. Los antiguos griegos habían demostrado que los polígonos regulares de 3, 5 y 15 lados pueden construirse utilizando solo una regla y una compás, pero no han podido descubrir más formas de este tipo. Pero Gauss fue incluso más allá del heptadecágono. Descubrió una fórmula matemática para encontrar todos los polígonos regulares que pueden construirse usando solamente regla y compás, y encontró 31. Gauss estaba tan orgulloso de la demostración de este resultado que decidió estudiar Matemáticas.
Como anécdota, Johann Carl Friedrich Gauss mantuvo un diario de sus descubrimientos, comenzando con el heptadecágono. El diario, que enumera 146 descubrimientos, estuvo perdido durante más de 40 años después de su muerte.
Estando todavía en la universidad Gauss realizó otros importantes descubrimientos, entre los que destacan la aritmética modular, que sirvió para unificar la teoría de números; la ley de reciprocidad cuadrática, enunciada pero no demostrada completamente por Legendre unos años antes, y también que todo número entero positivo puede expresarse como suma de como mucho tres números triangulares.
Dos años tan intensos en Göttingen le bastaron para darse cuenta de que ya nadie podía hacerle avanzar allí, por lo que regresó a su casa en Brunswick para escribir su tesis doctoral. Una investigación que presentó en 1799 y que versó sobre el teorema fundamental del álgebra, que establece que toda ecuación algebraica de coeficientes complejos tiene soluciones igualmente complejas.
En 1801 Gauss publicó las Disquisiciones aritméticas, una obra destinada a influir de forma decisiva en la conformación de las matemáticas y en especial en el ámbito de la teoría de números. En esa obra destacan los siguientes hallazgos: la primera prueba de la ley de la reciprocidad cuadrática; una solución algebraica al problema de cómo determinar si un polígono regular de ‘n’ lados puede ser construido de manera geométrica; un tratamiento exhaustivo de la teoría de los números congruentes; y numerosos resultados con números y funciones de variable compleja que marcaron el punto de partida de la moderna teoría de los números algebraicos.
Cuando fue capaz de predecir con exactitud el comportamiento orbital del asteroide ‘Ceres’, avistado por primera vez pocos meses antes, su fama creció de forma exponencial. Para lograrlo empleó el método de los mínimos cuadrados que él mismo desarrolló en 1794 y que en la actualidad continúa siendo la base computacional de estimación astronómica.
En 1807 aceptó el puesto de profesor de Astronomía en el Observatorio de Göttingen, cargo en el que permaneció durante el resto de su vida. Tal vez lo hizo porque un año antes falleció el duque de Brunswick y con él también acabó el apoyo financiero a Gauss. El científico tomó su nuevo trabajo de astronomía en serio, utilizando regularmente su telescopio para observar el cielo nocturno, e hizo varias mejoras prácticas a los instrumentos astronómicos y supervisó la construcción de un nuevo observatorio.
En esos años Johann Carl Friedrich Gauss maduró sus ideas sobre la construcción de una geometría lógicamente coherente que prescindiera del postulado de Euclides de las paralelas y con la que se adelantó en más de treinta años a los trabajos posteriores de Lobachevskiy y Bolyai.
En esos años, su esposa, con quien había contraído matrimonio en 1805, falleció al dar a luz a su tercer hijo; y más tarde se casó en segundas nupcias y tuvo tres hijos más.
En 1820, ocupado en la determinación matemática de la forma y el tamaño del globo terráqueo, Gauss desarrolló numerosas herramientas para el tratamiento de los datos observacionales. Entre ellas destaca la curva de distribución de errores que lleva su nombre, conocida también con el apelativo de distribución normal y que constituye uno de los pilares de la estadística.
Otros resultados relacionados con su interés por la geodesia son la invención del heliotropo, y, en el campo de la matemática pura, sus ideas sobre el estudio de las características de las superficies curvas que, desarrolladas en su obra Disquisitiones generales circa superficies curvas (1828), sentaron las bases de la moderna geometría diferencial.
También prestó atención al fenómeno del magnetismo, que culminó con la instalación del primer telégrafo eléctrico (1833). En 1835 Gauss formuló la ley o teorema de Gauss. Esta ley fue una de sus contribuciones más importantes en el campo del electromagnetismo, y de ella derivarían dos de las cuatro ecuaciones de Maxwell.
Otras áreas de la física que Gauss estudió fueron la mecánica, la acústica, la capilaridad y, muy especialmente, la óptica, sobre la que publicó el tratado Investigaciones dióptricas (1841), en las que demostró que un sistema de lentes cualquiera es siempre reducible a una sola lente con las características adecuadas.
Posiblemente fue la última aportación fundamental de Johann Carl Friedrich Gauss, un científico cuya profundidad de análisis, amplitud de intereses y rigor de tratamiento le merecieron en vida el apelativo de “príncipe de los matemáticos” y que fue tan reconocido que los últimos billetes de 10 marcos en Alemania, antes de la entrada del euro tenían su efigie.
Gauss fue un perfeccionista, hasta el punto de que solo publicó obras que creía eran perfectas. Muchos de los avances significativos que descubrió permanecieron inéditos hasta después de su muerte, como bastante oculta fue siempre su capacidad docente, al pensar que los alumnos no estaban lo suficientemente preparados, si bien hasta eso cambió a lo largo de su vida y se convirtió en un imán de talentos en la universidad de Göttingen, ciudad en la que falleció mientras dormía el 23 de febrero de 1855. Tenía 77 años.
Fue enterrado en el cementerio Albanifriedhof de Göttingen, cerca de la universidad. En sus últimos años, Gauss seguía estando tan orgulloso de su logro juvenil del heptadecágono que pidió que fuera tallado en su lápida, al igual que Arquímedes tenía una esfera dentro de un cilindro tallado en el suyo. Por desgracia, su deseo no se cumplió, ya que el cantero dijo que sería demasiado difícil esculpir un heptadecágono que no se pareciera a un círculo.
Carl Friedrich Gauss fue un hombre bondadoso, que odiaba viajar y que solo dejó Göttingen una vez en 48 años para asistir a una conferencia en Berlín. Era un apasionado de la literatura y de la recopilación de datos, con una biblioteca personal provista de 6.000 libros escritos en los idiomas que había dominado incluyendo danés, inglés, francés, griego, latín, ruso y su alemán nativo.
https://elpais.com/elpais/2018/04/30/ciencia/1525069233_387473.html
Mostrando entradas con la etiqueta príncipe de las matemáticas. Mostrar todas las entradas
Mostrando entradas con la etiqueta príncipe de las matemáticas. Mostrar todas las entradas
Suscribirse a:
Entradas (Atom)