Mostrando entradas con la etiqueta matemáticas. Mostrar todas las entradas
Mostrando entradas con la etiqueta matemáticas. Mostrar todas las entradas

jueves, 7 de diciembre de 2017

_- “Shanghai mastery”: los secretos de los mejores profesores de matemáticas del mundo

_- No por casualidad los maestros de matemáticas de Shanghái son considerados los mejores del mundo: se han ganado su reputación a fuerza de resultados descollantes de sus alumnos en competitivas pruebas internacionales.

El método de enseñanza en la ciudad más poblada de China se ha convertido ahora en un producto cultural de exportación.

Lo llaman "Shangai Mastery" (Maestría de Shangái). Y la mitad de las escuelas de Reino Unido adoptará este sistema en sus aulas de primaria, después de un período de prueba iniciado en 2014 y tras el anuncio del gobierno, esta semana, de una inversión de US$55 millones para apoyar a los maestros en la transición.

Esta técnica de enseñanza genera alumnos de alto rendimiento en porcentajes que son la envidia del resto del mundo docente. Según algunas mediciones, los estudiantes de Shanghái alcanzan los mismos resultados que otros niños con tres años más de escolaridad en otras partes del mundo.

En las pruebas PISA de matemáticas, Shanghái-China se mantiene en el primer lugar del ranking con 613 puntos, 119 puntos sobre la media de todos los países y economías participantes.
Y los índices muestran que el porcentaje de estudiantes de 15 años que son "analfabetos numéricos" -esto es, incapaces de realizar cálculos básicos- está 10 puntos por debajo del de países como Estados Unidos o Reino Unido.
Pero, ¿cuál es el secreto del éxito de Shanghái?

Conceptos primero
Para empezar, el método chino se basa en organizar cada lección en torno a un concepto matemático único, sea el principio básico de la suma, la lógica de resolución de ecuaciones o la comprensión de una fracción como parte de un entero.

El que sea, pero uno por vez.
Esa noción única es cubierta de manera metódica y sistemática, a tal punto que la clase entera se detiene hasta que todos los niños la hayan comprendido.

"En muchos países se considera que una buena lección es una que logra cubrir mucho material.

Cuanto más progreso se registre, mejor es la clase", señala Mark Boylan, experto en educación de la Universidad Sheffield Hallam, en Reino Unido, y colaborador de la revista Schools Week.
"Pero en Shanghái el énfasis está puesto en asegurarse que una idea o principio ha sido cabalmente aprendido en una lección, de tal manera que no haya que volver a enseñarlo en el futuro".

Expertos en educación consideran que el "Shanghai Mastery" es riguroso y demandante, apoyado en libros de alta calidad que se actualizan una vez al año y desplazan por completo a las fotocopias y hojas de ejercicio tan comunes en otras partes del mundo.

El método es también altamente conceptual,
basado en inculcar leyes y fundamentos de las matemáticas en primer término, aunque luego se incentiva el uso de objetos e imágenes para representar físicamente los conceptos y visualizar ideas abstractas.

El lenguaje con que los niños se expresan también es uno de sus pilares.
"Siempre queremos que se expliquen y expresen en oraciones completas, no dando respuestas sueltas sino explicando cómo se llegó a la resolución correcta (de un problema matemático). Esto es clave para desarrollar el lenguaje matemático y las habilidades de razonamiento", explica en su página web el programa profesional Mathematics Mastery, de Reino Unido, basado en el método asiático.
Los críticos, sin embargo, señalan que el método de Shangái puede volverse demasiado abstracto y es incapaz de fomentar el traspaso de conceptos matemáticos a escenarios de la vida real.

Otros señalan que los maestros chinos desarrollaron un método "a prueba de exámenes", pensado para formar alumnos que alcancen buenos resultados pero que no son necesariamente los más aptos para aplicar el conocimiento a las situaciones cotidianas.

Todos juntos a contar
También el principio de cohesión es parte de la lógica de la reputada enseñanza en Shanghái.
La clase es considerada una unidad, donde todos los alumnos avanzan a la vez… o no avanzan, si es que alguno de ellos todavía no ha entendido del todo.

No hay división en subgrupos por niveles de habilidad, como ocurre en otros sistemas educativos, ni tareas diferenciales para alumnos más avanzados o rezagados.
Todo niño lleva un matemático en el corazón, parece ser la premisa, y es responsabilidad del maestro sacarlo a relucir.
"Dicho crudamente, los métodos de diferenciación que se utilizan con frecuencia en las primarias (europeas) consisten en separar a los 'matemáticamente hábiles' de los 'matemáticamente débiles' y modificar el contenido para unos y otros", escribe Charlie Stripp, director del Centro Nacional de Excelencia para la Enseñanza de las Matemáticas (NCETM, por sus siglas en inglés) de Reino Unido.

"Esto se hace con las mejores intenciones, para ayudar a los que tienen dificultades... pero a la luz de la evidencia que nos llega desde Asia, estamos comenzando a preguntarnos si esta diferenciación no es dañina en muchos sentidos".

En Shanghái, en cambio, a los estudiantes más avanzados se les pide que profundicen en los conceptos y ayuden al resto, más que fomentar que se adelanten a los rezagados.

Mientras que para algunos esta búsqueda de una clase igualitaria es loable, otros consideran que en realidad desincentiva a los alumnos más capaces y los lleva al aburrimiento seguro.

La disposición del aula, con pupitres alienados mirando al frente al modo clásico, también es objeto de crítica por quienes promueven métodos más flexibles y modernos. Es "poco inspirador" y "no fomenta la interacción entre pares", señalan.

Repetición, repetición, repetición
Desde los 5 años, la práctica de ejercicios y cálculos tiene un régimen casi militar en Shanghái, con repeticiones hasta que cada niño logre incorporar el concepto del día.

Y es que la reiteración es otro de los principios en que se basa el método.
En la práctica, la clase transcurre así: un niño responde a la pregunta del maestro, luego todos repiten la respuesta al unísono. Luego otro niño contesta la pregunta siguiente, el resto de la clase repite en alto, y así.
Cada ronda termina en aplausos "de premio"; luego todos deberán anotar las respuestas en sus cuadernos y reiterarlas una vez más en la pizarra.
Pero más allá del rigor formal, las clases suelen ser muy interactivas, con discusiones con la maestra y entre compañeros.
"Contrario a lo que indican algunos, la enseñanza de matemáticas según este método no es sólo una repetición de memoria, aunque sí es cierto que las repeticiones llevan a que los alumnos memoricen y sean capaces de recordar respuestas pre-aprendidas, que son fundamentales en matemáticas", indica Stripp.
Las sesiones son, sobre todo, cortas: 35 a 40 minutos de enseñanza focalizada, seguidas de 15 minutos de juego desestructurado.

El maestro es la estrella
Otro de los secretos del éxito también se mide por el reloj: en el número de horas que los docentes pasan al frente de una clase. Son muy pocas.
Según una evaluación del método de Shanghái publicada en estos días por la Universidad de Sheffield Hallam, un maestro imparte al día dos sesiones de 40 minutos cada una.

El resto de la jornada laboral se dedica a evaluaciones entre pares y observación no participante de las clases de otros.
Pero, aún más relevante, quien está al frente de una clase ha debido pasar antes por cinco años de formación específica. Dicho de otro modo: una maestra de matemáticas estudió especialmente cómo enseñar matemáticas a nivel primario durante sus cinco años de carrera universitaria.

No hay "maestros de grado" o generalistas como se acostumbra en otros países del mundo.
"Parte del éxito en la enseñanza en países como China y Singapur se origina también en el respeto con que se ve a los maestros y en el tiempo que se les da para planear y prepararse", agrega el experto en educación James Bowen, director del sindicato y asociación docente NAHT Edge de Reino Unido.

Sin embargo, los críticos señalan que los privilegios de los maestros no siempre coinciden con los beneficios que perciben los estudiantes.
Un informe del Instituto para el Desarrollo Social de la Universidad NYU Shanghai, publicado en 2014, revela que si bien la mayoría de las escuelas tiene buenas aulas, bibliotecas y laboratorios, muchas carecen de otros espacios clave para el bienestar de los niños, como gimnasios, auditorios, patios o salas de juego.

Y un 13% de los alumnos en edad escolar tiene salud "regular o mala", según el reporte.

El éxito del programa (de Shanghái) depende de cuánto y cómo entrenes a los docentes (Formación) y cuán comprometidos estén ellos con el método (Implicación). 
Los gobiernos son los responsables de poner más esfuerzo en reclutar y retener docentes entrenados, lo que no pasa en todas partes", apunta Russell Hobby, secretario general de NAHT.

http://www.bbc.com/mundo/noticias-36809516

martes, 26 de septiembre de 2017

_- Menos trigonometría, más pensamiento crítico: las estrategias de una especialista del MIT para combatir la pasividad en las aulas

_- Las disciplinas de poca aplicación práctica y la enseñanza de contenidos alejados de la vida real son perjudiciales para los alumnos, ya que les enseñan a pensar de un modo lineal y no los prepara para desempeñarse en el mundo.

Esto es lo que sostiene la especialista en educación Jennifer Groff, asistente de investigación del Laboratorio de Medios del Instituto de Tecnología de Massachusetts (MIT, por sus siglas en inglés), de Estados Unidos.

Groff es autora de estudios sobre enseñanza personalizada, innovaciones en sistemas de aprendizaje y uso de juegos y tecnologías en el aula.

En entrevista con BBC Brasil, Groff se mostró de acuerdo con un creciente número de especialistas internacionales que defienden una enseñanza más basada en habilidades y competencias que en disciplinas tradicionales.

Estos son los fragmentos más importantes de la entrevista.
Una de las áreas que usted estudia es la del aprendizaje por juegos. ¿Qué ha funcionado o no en términos de juegos en el aula, de acuerdo a su experiencia?

En nuestro laboratorio, buscamos juegos que involucren (al alumno) en experiencias y le permitan la inmersión en un concepto, en vez de un juego que simplemente lo instruya para desarrollar una tarea.

Por ejemplo, para enseñar las tablas, los juegos con bloques le permiten a los niños entender que "dos bloques más dos forman cuatro".

No nos gustan los juegos en los que el alumno completa cuatro preguntas matemáticas para ganar el derecho a disparar a alienígenas y luego, le dicen "bien, el juego terminó, es hora de resolver más problemas de matemáticas".

Intentamos ayudar a los profesores a ver el valor de un aprendizaje más orientado hacia juego, explorando un tópico en lugar de "llenarle" la cabeza a los alumnos con ideas.

Los videojuegos comerciales también se pueden utilizar de manera eficiente. Civilization y Diplomacy ya fueron utilizados por buenos profesores como herramienta para involucrar a los alumnos en temas como la negociación, por ejemplo. (...).

Y (es importante) dejar a los niños liderar (el proceso), dejar que ellos sean profesores también. Se ha dicho mucho sobre el aprendizaje no centrado en el profesor, sino en los alumnos. ¿A eso es a lo que usted se refiere?
Exactamente.

Muchos de los juegos que desarrollamos en nuestro laboratorio son creados para ser jugados socialmente, en grupos, somos seres sociales y no construimos conocimiento en el aislamiento.

"Nos han estado enseñando mal las matemáticas durante todo este tiempo"

Hacemos que la experiencia individual y colectiva sea el centro (del aprendizaje), y el profesor (tiene que) crear un ambiente de esas experiencias para los niños y, quizá después, evaluar esas experiencias, más que dirigir un plan de clase.

¿Qué ha resultado más eficiente en las transformaciones de los ambientes de aprendizaje en las escuelas?
Sabemos por investigaciones y escuelas (exitosas) que el buen aprendizaje se centra en el estudiante que construye su propio conocimiento socialmente.

En muchos currículos, tenemos la clase de 45 minutos de matemáticas, por ejemplo, y (los estudiantes) ni siquiera saben por qué están aprendiendo matemáticas. Los estudiantes no reciben (el contenido) en contexto.

Y el contexto es algo poderoso: proyectos, problemas, conceptos del mundo real. Las escuelas en las que veo un aprendizaje más robusto son las que trabajan en esos parámetros (...) basados ​​en competencias.

¿Cuál debe ser la prioridad de los colegios en sus sistemas educativos?
La cuestión es que (históricamente) no sabíamos cómo medir el desempeño de los alumnos a gran escala, entonces los dividimos en clases por edades, todos aprendiendo lo mismo al mismo tiempo.

Hoy vemos que eso no ayuda mucho. Hemos entendido que el aprendizaje es orgánico, individualizado, diversificado y sin embargo la forma en que manejamos nuestras escuelas no refleja eso.

Por eso está ganando mucha atención el modelo de aprendizaje basado en competencias, como por ejemplo el pensamiento crítico y otras habilidades, en lugar de dividir (las clases) artificialmente en materias.

¿Y cómo conciliar eso con un modelo tradicional de pruebas y evaluaciones?
Ese es el problema.

Las evaluaciones se señalan desde hace mucho tiempo como el mayor problema en la educación, y con razón.

Como muchos modelos están atados a ellas, terminan siendo la cola que le dé el equilibrio al perro. (El ideal), en un futuro próximo, es que la evaluación esté incorporada en el sistema de modo que los niños ni siquiera perciban que están siendo evaluados.

Las evaluaciones son esencialmente feedback, y todos necesitamos retroalimentación.
Una de las razones por las que me interesa el aprendizaje por juegos es que (...) un buen juego logra (a través de algoritmos) recoger en el momento los datos de los usuarios y se adapta según eso (es decir, entiende lo que el alumno ya ha aprendido y sugerirle contenido para complementar sus deficiencias).

En este modelo, ¿cómo saber lo que cada niño necesita aprender en determinada etapa?
No deberíamos poner esas expectativas sobre los niños, del tipo "a esta edad ellos necesitan saber esto". Probablemente debe haber áreas de alerta, debemos preocuparnos si a determinada edad el niño no sabe leer o escribir, por ejemplo.

Pero uno de los problemas de la educación es la expectativa de que todos los alumnos (aprendan uniformemente), y así no es como funciona.

Queremos que sigan sus intereses, que es de donde vendrá su motivación, y tenemos que recoger datos para saber en qué punto están en términos de competencias.

Hay un mapa de competencias del MIT que está aún en desarrollo. (...) Son grandes áreas de dominio como pensamiento crítico, pensamiento sistemático (tener en cuenta múltiples opciones, prever consecuencias y efectos), pensamiento ético u otras habilidades. Incluso matemáticas, lenguas.

Es posible medir ese desarrollo en niños, así como es posible acompañar a un bebé que aprende a moverse hasta ser capaz de correr.

Con estas mediciones, los profesores no necesitarían (hacer) evaluaciones, sino permitir que los alumnos tengan una experiencia de aprendizaje poderosa y luego simplemente monitorizarla.

¿Cómo evaluar matemáticas en este contexto?
Pasé mi secundaria aprendiendo álgebra, geometría, trigonometría, precálculo y cálculo. Y hoy no uso la mayoría de esas cosas.

Es algo totalmente inútil para la mayoría de los estudiantes, que terminan dejando de aprender cosas como finanzas, estadística, análisis de datos y vemos esos datos diariamente, pero no logramos entender su sentido. La matemática es un gran ejemplo de una disciplina que necesitamos mirar desde una perspectiva de las competencias.

No necesitamos una sociedad repleta de matemáticos, sino de personas que sepan organizar su presupuesto personal, calcular sus impuestos.

Usted mencionó el pensamiento ético. ¿Cómo pueden enseñarse habilidades sociales como ésta?

En general, es (tener en cuenta) múltiples perspectivas sociales.

En la medida en que uno puede ver más (algo) desde la perspectiva de muchas personas y tomar decisiones a partir de eso, más éticas serán nuestras decisiones.

El MIT tiene un juego llamado Quandary (algo así como dilema), que coloca a los niños en un mundo ficticio con varios escenarios en los que no hay una respuesta correcta o equivocada, sino decisiones a tomar y consecuencias.

Es un ejemplo de este aprendizaje más divertido y contextual.
Si entramos a una escuela tradicional y le pedimos al profesor que enseñe pensamiento ético, probablemente no tendrá ni idea de cómo hacerlo.

Este es un juego perfecto para eso, jugando en escenarios ficticios en vez de tener una clase. (...) La mayoría de las innovaciones ocurren justamente en escuelas donde hay libertad para jugar.

Vivimos en una época en que ideas pueden ser reforzadas por noticias falsas y por algoritmos que logran exponer a los usuarios de redes sociales a contenidos seleccionados. ¿Cómo enseñar pensamiento crítico en ese ambiente?

Es un gran ejemplo de cómo, si colocamos a los niños en ambientes de aprendizaje en los que no se los desafía a controlar sus propias decisiones, nunca van a reflexionar sobre estas cuestiones.

¿Queremos que los niños vayan a la escuela para simplemente obedecer y hacer fila, o queremos un ambiente fértil en el que florezcan como agentes proactivos en el mundo?

No podemos esperar que, en un ambiente en que los niños tienen que obedecer, aprendan a ser ciudadanos comprometidos y conscientes.

http://www.bbc.com/mundo/noticias-41306714

domingo, 16 de julio de 2017

Muere Maryam Mirzakhani, la primera mujer en ganar una medalla Fields de Matemáticas. La profesora ha fallecido a los 40 años en un hospital de EE UU a consecuencia de un cáncer de mama

La iraní Maryam Mirzakhani, la primera mujer que recibió la medalla Fields, considerada el premio Nobel de las Matemáticasha muerto este sábado en Estados Unidos a los 40 años de un cáncer. Así lo ha confirmado la prensa iraní, que cita a un familiar. Y también Firouz Naderi, un científico de la Nasa amigo suyo. "Una luz se ha apagado hoy. Me rompe el corazón... se ha ido demasiado pronto", ha escrito en su perfil de Instagram.

Mirzakhani, que también poseía la nacionalidad estadounidense, era profesora en la Universidad de Stanford. En 2014 obtuvo la medalla Fields por sus "impresionantes avances en la teoría de las superficies de Riemann y sus espacios modulares". El galardón se entrega cada cuatro años durante la celebración del Congreso Internacional de Matemáticas y premia por sus descubrimientos sobresalientes a un máximo de cuatro matemáticos menores de 40 años. Mirzakhani también fue la primera iraní en recibir este premio.

Hace cuatro años, un año antes de recibir la medalla Fields, a Mirzakhani le fue diagnosticado un cáncer de mama. Este sábado ha fallecido en un hospital de EE UU en el que estaba ingresada en la unidad de cuidados intensivos después de sufrir la tercera recaída de su enfermedad, que se había extendido a su médula ósea hace unas semanas. Sus padres viajaron desde Irán el pasado lunes para poder cuidar de su hija y de su familia. Mirzakhani estaba casada con el científico checo Jan Vondrák y juntos tenían una hija llamada Anahita.

La profesora de Stanford nació en 1977 en Teherán y pasó su infancia en la capital iraní. Fue una adolescente brillante y ganó la Olimpiada Internacional de Matemáticas en 1994 y en 1995. En 1999 se licenció en Matemáticas en la Sharif University of Technology, en Irán, y en 2004 se doctoró en la Universidad de Harvard, en EE UU. En 2008, con 31 años, comenzó a dar clases en la Universidad de Stanford.

Mirzakhani recibió el premio Blumenthal de la American Mathematical Society en 2009. En 2013, fue galardonada con el Ruth Lyttle Satter en Matemáticas, también otorgado por la American Mathematical Society, y en 2014 ganó el Premio de Investigación Clay, concedido por el Instituto Clay de Matemáticas. La medalla Fields fue el galardón más importante que recibió durante su carrera.

https://elpais.com/elpais/2017/07/15/ciencia/1500123537_307923.html

lunes, 17 de abril de 2017

Alan N. Stroh, el matemático desconocido que modulaba los sólidos. La fórmula propuesta por el investigador, nacido un 4 de abril de 1926, se usa en campos como la sismología, la acústica, la geofísica, la biomecánica y la industria de las telecomunicaciones.

La Teoría de la Elasticidad estudia la deformación que se produce en un sólido al ser sometido a distintas acciones (fuerzas, cambio de temperatura, un campo eléctrico, etc). Es un análisis imprescindible para diseñar cualquier elemento estructural que está expuesto a condiciones de carga y medio ambientales durante su vida útil, desde las vigas de un edificio a los nanocables que permiten interpretar el mundo microscópico. Para relacionar las características del material y su comportamiento con las acciones a las que está sometido es necesaria una matemática rigurosa y compleja. Alrededor del año 1820, grandes matemáticos como Augustin-Louis Cauchy y Claude-Louis Navier, entre otros, dieron forma a dicha teoría. Propusieron analizar la deformación de los sólidos mediante un sistema de ecuaciones diferenciales de segundo orden, que expresa los desplazamientos internos del material en función de las acciones aplicadas en el tiempo.
Representación de la fórmula de la mecánica continua.

Durante 140 años todos los estudios se apoyaron en dicho marco teórico, hasta que Alan Stroh, un matemático casi desconocido, abrió una nueva etapa de investigaciones en este campo. Publicó dos artículos (en 1958 y 1962) en los que reemplazó dicho sistema por uno de ecuaciones diferenciales de primer orden. Este sistema, al igual que el anterior, solo se puede resolver de forma exacta en casos muy limitados, pero permite extraer información de manera más sencilla. En la actualidad, su formulación se usa en campos como la sismología, la acústica, la geofísica, la biomecánica y la industria de las telecomunicaciones; desde el análisis no destructivo del daño en estructuras inteligentes mediante la propagación de ondas hasta el estudio de distorsiones e interferencias durante el uso de teléfonos móviles, pasando por el modelado de sistemas micro y nano-magnetoelectromecánicos. Y las aplicaciones siguen creciendo.

Pocos datos biográficos se conocen de este científico; ni siquiera aparece en Wikipedia. Nació en Queenstown, Sudáfrica, un día como hoy, 4 de abril, de 1926, donde completó una licenciatura de matemática aplicada. En el año 1950 se trasladó al Departamento de Física de Bristol, Reino Unido, para estudiar el comportamiento mecánico de ciertos sólidos deformables. Allí pudo formarse junto a grandes científicos (incluso premios Nobel en física y otras disciplinas), muchos de los cuales habían huido de los nazis en Europa en los años treinta y habían sido acogidos por la universidad. En 1953 finalizó su doctorado y trabajó en Cambridge hasta 1955, año en que se incorporó a Sheffield.

Stroh se formó en un ambiente académico que es hoy reconocido como la gran escuela británica de la matemática aplicada de mediados del siglo XX, centrada, entre otros aspectos, en el estudio de la elasticidad, la plasticidad y la teoría de defectos.

La colaboración entre investigadores dedicados al estudio de la materia y matemáticos dedicados a la mecánica dio paso al desarrollo de la mecánica de materiales. En el centro de estos avances estaban los nazis y la tragedia de la Segunda Guerra Mundial, que generaron la diáspora de científicos. Además, en el Reino Unido se produjeron iniciativas gubernamentales, tanto durante la guerra como después de ella, que potenciaron estudios centrados en el comportamiento de la materia. Durante esos años, Stroh se dedicó al estudio de la estabilidad estructural de sólidos analizando la formación y propagación de grietas y sus defectos.

En 1958 se trasladó al Departamento de Ingeniería Mecánica del MIT, EE UU, donde publicó su gran aportación a la ciencia, el formalismo de Stroh. Analizó materiales anisótropos, es decir, que presentan distintas características mecánicas (distinta rigidez) según la dirección en la que son observadas. Para describir la deformación utilizó variables geométricas (desplazamientos) y físicas (tensión o fuerza actuando sobre la superficie del sólido), conceptos relativamente simples, frente a los propios de la maquinaria matemática de la elasticidad. Su formulación resultó ser muy versátil, ya que le ofrece al investigador vías alternativas de resolución del problema. Sin embargo, Stroh no llegó a ver el impacto de su trabajo. Falleció el mismo año que terminó de publicar sus resultados, con tan solo 36 años, en un accidente de tráfico mientras se mudaba a su nuevo trabajo en Seattle. El tiempo ha hecho el resto: su nombre y su legado científico han quedado ya para para la eternidad. Hoy cumpliría 91 años.

José Merodio es Profesor del Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras de la ETSI Caminos, Canales y Puertos de la Universidad Politécnica de Madrid.

Café y Teoremas es una sección dedicada a las matemáticas y al entorno en el que se crean, coordinado por el Instituto de Ciencias Matemáticas (ICMAT), en la que los investigadores y miembros del centro describen los últimos avances de esta disciplina, comparten puntos de encuentro entre las matemáticas y otras expresiones sociales y culturales, y recuerdan a quienes marcaron su desarrollo y supieron transformar café en teoremas. El nombre evoca la definición del matemático húngaro Alfred Rényi: “Un matemático es una máquina que transforma café en teoremas”.

http://elpais.com/elpais/2017/03/31/ciencia/1490959875_428099.html

lunes, 3 de abril de 2017

Un matemático ha creado un método de enseñanza que está demostrando que no hay estudiantes malos en matemáticas

Las matemáticas son un tema notoriamente difícil para muchos niños y adultos. 
Hay una brecha de género, una brecha de carreras, y sólo un mal desempeño en general en muchos países.

John Mighton, un dramaturgo canadiense, autor y profesor de matemáticas que luchó con las matemáticas, ha diseñado un programa de enseñanza que tiene algunos de los estudiantes de matemáticas con el peor desempeño que se desempeñan bien y realmente disfrutan de las matemáticas. Cada vez hay más pruebas de que el método funciona para todos los niños de todas las habilidades.

Su programa, JUMP (Junior Undiscovered Math Prodigies) Math, está siendo utilizado por 15.000 niños en ocho estados de los Estados Unidos (está alineado con el Núcleo Común), más de 150.000 en Canadá y alrededor de 12.000 en España. El Departamento de Educación de los Estados Unidos encontró lo suficientemente prometedor como para dar una subvención de $ 2.75 millones en 2012 a Tracy Solomon y Rosemary Tannock, científicos cognitivos del Hospital for Sick Children y la Universidad de Toronto, para llevar a cabo un ensayo controlado aleatorio con 1.100 niños y 40 aulas . Los resultados, a finales de este año, esperan confirmar el trabajo anterior realizado por los dos en el 2010, que mostró que los estudiantes de 18 aulas usando JUMP progresaron dos veces más rápido en una serie de pruebas de matemáticas estandarizadas que los que recibieron instrucción estándar en otras 11 aulas. "Sería difícil atribuir estas ganancias a cualquier cosa menos a la instrucción, porque nos esforzamos mucho para asegurarnos de que los maestros y los estudiantes fueran tratados de manera idéntica, excepto por la instrucción que recibieron", dijo Salomón.

Cómo funciona
Mighton ha identificado dos problemas importantes en cómo enseñamos matemáticas. Primero, sobrecargamos el cerebro de los niños, moviéndonos demasiado rápido del concreto al abstracto. Eso pone demasiado énfasis en la memoria de trabajo. En segundo lugar, dividimos las clases por habilidad, o "flujo", creando jerarquías que desactivan a los más débiles mientras que no benefician a los mejores.

Mighton sostiene que en la última década, Estados Unidos y Canadá han pasado a un enfoque de "descubrimiento" o "investigación" basado en las matemáticas, por el cual los niños están diseñados para descubrir muchos conceptos por sí solos. El ejemplo que ofrece en este artículo de Scientific American es el siguiente:

"Las lecciones basadas en el descubrimiento tienden a centrarse menos en los problemas que pueden resolverse siguiendo una regla general, un procedimiento o una fórmula (como" encontrar el perímetro de un rectángulo de cinco metros de largo y cuatro de ancho ") y más sobre problemas complejos basados ​​en Ejemplos reales que se pueden abordar de más de una manera y tener más de una solución ("usar seis azulejos cuadrados, hacer un modelo de un patio que tenga el menor perímetro posible") " Solomon dijo que este enfoque -o también llamado aprendizaje basado en problemas- significa que el papel de los maestros no es proporcionar instrucción directa, sino dejar que los niños colaboren para encontrar soluciones a problemas complejos y realistas que tengan múltiples enfoques y respuestas. Pero demasiados niños no tienen los bloques de construcción para descubrir las respuestas. Se sienten frustrados, y luego se fijan en la creencia de que no son "gente de matemáticas".

Un problema clave con este método es que requiere que los niños tengan demasiadas cosas en su cerebro al mismo tiempo. "Esto es muy difícil para los maestros", dijo Solomon, y "es muy difícil para los niños".

Mighton piensa-y ofrece investigación sobre el cerebro (pdf) para apoyarlo- que los niños tengan más éxito con las matemáticas cuando se divide en pequeños componentes que se explican cuidadosamente y luego se practican continuamente.

Para explicar el concepto a mí, él tomó una pregunta básica-¿qué es 72 dividido por 3? Me mostró varias maneras de hacerlo, incluyendo decir que tres amigos quieren compartir siete monedas de diez centavos y dos monedas de un centavo. Cuando me detengo, incluso por un segundo, Mighton se disculpa y dice que claramente no lo ha explicado bien, y toma otra punzada en él de una manera diferente. Los críticos argumentarían que todos los buenos maestros abordan problemas como este, desde múltiples ángulos. Pero muchos maestros luchan con su propia ansiedad matemática, y la investigación muestra que luego transmiten esta ansiedad a sus estudiantes. (Eso sucede con los padres también, por desgracia.)

Y Nikki Aduba, quien ayudó a probar el método de Mighton en las escuelas de la ciudad londinense de Lambeth, dijo que Mighton ha desglosado los pasos tan cuidadosamente que casi todo el mundo podría captar. Muchos maestros, dijo, acogieron con beneplácito este enfoque. "Muchos pensaron, está bien pasar de A a B hay estos tres pasos, pero resulta que hay realmente cinco o seis", dijo.
Cuando Solomon condujo el programa piloto en JUMP, dijo que eran los pasos pequeños e incrementales que hicieron que la matemática fuera accesible para todos los estudiantes y permitió que algunos de ellos experimentaran el éxito en matemáticas por primera vez. "Porque pueden dominar los incrementos, están consiguiendo los cheques y construyendo la mentalidad que sus esfuerzos pueden llegar a ser algo. Esa experiencia los motiva a continuar ", dijo. Al continuar, practican más matemáticas, obtienen más habilidades y se convierten en la gente de matemáticas que creían que no podían ser.

Mighton dice que los pequeños pasos son críticos. "No voy a mover hasta que todos puedan hacer esto", dijo. "Las matemáticas son como una escalera, si te pierdes un paso, es difícil seguir adelante. Hay un conjunto de secuencias. "Ha llamado su método" micro descubrimiento "o" descubrimiento guiado ". Hay otras pruebas de su éxito. Cuando la Escuela Charter de Manhattan pilotó el programa en 2013-14 con sus estudiantes de cuarto grado, experimentó el mayor aumento en los puntajes de matemáticas en toda la ciudad de Nueva York. Ahora todas las clases de la escuela lo utilizan.

El programa se utilizó en Lambeth, una de las zonas más pobres de Londres, con más de 450 de sus estudiantes con peores resultados. En el momento en que comenzaron, el 14% estaban realizando a nivel de grado: cuando los niños tomaron sus exámenes de grado 6 (llamados exámenes de Key Stage 2 en el Reino Unido), el 60% pasó. Aduba dijo que funcionó "brillantemente", especialmente para los niños que habían estado luchando.

"Lo más importante del programa JUMP es que comienza pequeño y progresa en pasos muy pequeños hasta un nivel muy sofisticado en un período relativamente corto de tiempo", dijo. "Restauró la confianza en los niños que pensaban que" no puedo hacer matemáticas. "De repente, para poder hacer cosas, aumentó su confianza".

El mayor problema
El problema más grande que Mighton ve son las jerarquías. Los maestros tienden a asumir que en la mayoría de las aulas hay una curva en forma de campana -una amplia distribución de habilidades- y enseñar en consecuencia. Esto significa que el 20% de la clase obtiene un desempeño inferior, el 60% está en el medio y el 20% supera el desempeño, lo que da lugar a un rango de habilidades de dos o tres grados dentro de un salón de clases.

"Cuando la gente habla de mejorar la educación quieren mover la media más alta. No hablan de endurecer la distribución", dijo Mighton.

La razón por la que esto importa es que, como muestra la investigación (pdf), los niños se comparan entre sí desde el principio y deciden si son o no "personas de matemáticas". Los niños que deciden que no son personas de matemáticas corren el riesgo de desarrollar algo. Carol Dweck llama una mentalidad "fija": ellos piensan que sus talentos son innatos y no pueden ser mejorados. Treinta años de investigación de la mentalidad demuestran que los niños con una mentalidad fija toman menos riesgos y desempeño inferior a aquellos que piensan que su esfuerzo importa.
Dweck ha examinado JUMP y dice que fomenta una mentalidad de "crecimiento": la creencia de que sus habilidades pueden mejorar con sus esfuerzos. "Los niños se mueven a un ritmo emocionante; Parece que debe ser difícil, pero no es difícil, tienen este sentimiento de progreso, que [pueden] ser buenos en esto", dijo en una conferencia de matemáticas.

Mighton dice que el problema con la curva de la campana es que todo el mundo se preocupa por los niños en la parte superior se aburren. "Nuestros datos muestran que si se enseña a toda la clase, toda la clase lo hace mejor", dice. Y, al moverse juntos y tener tantos niños experimentan el éxito en las matemáticas, experimentan lo que Durkheim llama "efervescencia colectiva", la alegría de saber que pueden hacerlo, en lugar de la alegría de simplemente obtener una alta calificación.

A medida que los distritos escolares se alejan de los editores educativos más comercialmente asiduos a programas basados en evidencia apropiada -un cambio que ha estado ocurriendo durante la década pasada, aunque lentamente- programas como JUMP probablemente tendrán más éxito. Hasta que ganó el premio al empresario del año de Schwab en 2015, Mighton -que lleva 15 años trabajando en JUMP- no ha tenido equipo de marketing y ha invertido todo su presupuesto en probar y refinar los materiales (JUMP es una organización sin fines de lucro y Sus recursos docentes están disponibles en su sitio web). Pearson, a modo de contraste, es una empresa de 5.300 millones de libras esterlinas (6.600 millones de dólares) con tentáculos en todos los rincones del mercado de la educación. Mientras que muchas personas tratan de pintar sus métodos como nuevos, Mighton es el primero en admitir que lo que está enseñando es antiguo. Él cree que las matemáticas han sido exageradas tan duro, y todo lo que los estudiantes y los profesores necesitan es que las cosas se desglosen adecuadamente. Muchos han apodado estos sencillos pasos como "perforar y matar". Pero dice que los pasos pueden ser divertidos, como rompecabezas.

Los matemáticos "tienen grandes egos, por lo que no le han dicho a nadie que las matemáticas son fáciles", dijo en el Foro Económico Mundial de Davos el mes pasado. "Los lógicos probaron hace más de 100 años que pueden ser divididos en pasos simples".

https://qz.com/901125/a-mathematician-has-created-a-method-of-teaching-that-is-proving-there-is-no-such-thing-as-a-bad-math-student/

Más de lo mismo en este blog aquí.

sábado, 11 de marzo de 2017

_--“El problema con las matemáticas no es de los niños, sino de cómo se enseña”

_--El matemático John Mighton es el creador del método Jump Math, un sistema de aprendizaje de las matemáticas que ya emplean 11.000 alumnos en España


Antes de doctorarse en matemáticas, a John Mighton no se le daban muy bien los números.  De hecho, suspendió el examen de cálculo cuando entró a la universidad. No fue hasta unos cuantos años después, cuando ya rondaba los 30, que retomó su relación con las sumas y las restas. "Al principio pensaba que yo era el problema, pero me di cuenta de que el problema estaba en la metodología con la que se explicaban las matemáticas", recuerda. Y tan convencido estaba de su tesis que él mismo ideó y desarrolló un nuevo sistema de aprendizaje de las matemáticas, el  Jump Math. Su metodología, ya implantada en seis países, es utilizada por más de 175.000 alumnos de Canadá y Estados Unidos. A España llegó en 2013 y ya cuenta con 11.000 estudiantes y una red de un millar de docentes.

"Las matemáticas son más fáciles de lo que la gente cree", sostiene mientras coge papel y boli. Y dibuja una división en un papel: 72:3. Pinta "tres amigos" con tres bolsas y pide que se repartan esas 72 "monedas" en grupos de 10 en 10. "En todos mis años dando clase no he conocido a ningún niño de cuarto curso que no sepa hacer esto. Aquí todos los niños sacan un 10, y como les ha salido bien y lo entienden, prestan atención: están despiertos, excitados y entusiasmados. Con lo cual, puedes ir aumentando los retos y llevarlos a niveles superiores a los que ellos mismos creen", explica.

Mighton, de origen canadiense y con una polifacética carrera más allá de las matemáticas —también es guionista, escritor y ha hecho sus pinitos como actor en El Indomable Will Hunting—, comenzó dando clases particulares a un grupo de niños en su casa. La mejoría en los resultados de los chavales sorprendió a sus propios profesores, que llamaron al matemático para que fuese al aula a explicar su forma de enseñar. Mighton asegura que todos los niños tienen capacidad para aprender y entender las matemáticas"A todos les gusta resolver problemas y hacer conexiones. El problema con las matemáticas no es de los niños, es de la metodología con la que se enseña". agrega.

Su programa se basa, precisamente, en  "la inutilidad de esa metodología""En una clase puede haber diferencias de hasta tres cursos entre unos niños y otros. Y el problema es que damos esto por normal cuando no lo es. Esas verdades absolutas son las que nos hacen ser incapaces como especies de desarrollar nuestras habilidades innatas", sostiene el artífice del Jump Math.

La clave está, asegura Mighton, en ir paso a paso, en no saltarse escalones en el aprendizaje. "Hay que enseñar a dividir conceptos para que los profesores puedan explicarlos bien. El problema es que a veces nos saltamos conceptos y el niño se pierde", señala. Su metodología, adaptada a alumnos desde educación infantil hasta el segundo curso de la ESO, está dividida en pequeñas unidades que los chavales pueden asumir. "Nuestro método se basa en el descubrimiento guiado. En vez de explicarte todas las operaciones, es el niño quien va descubriendo las cosas al solucionar los retos que se le presentan. El profesor, por su parte, debe saber plantear las preguntas bien pautadas porque si te saltas algún paso, no lo consigues", explica.

El éxito del alumno es una línea estratégica para no perder su atención. "Los niños se comparan entre ellos y hacen un juicio de valor: deciden quién es el listo y quién no. Y si no soy listo y no estoy hecho para las mates, mi cerebro deja de funcionar y dejo de intentarlo", argumenta. Por ello, la metodología de Mighton controla que el niño comprenda perfectamente cada paso que da. La evaluación continua y ejercitar la práctica a través de juegos y actividades que escapen del papel el boli para estimularlos también son elementos capitales para que el sistema funcione. Un estudio elaborado por el Centro de Investigación para la Educación Científica y Matemática (CRECIM) de la Universidad Autónoma de Barcelona, concluyó que los alumnos que aplicaron la metodología Jump Math mejoraron hasta dos puntos sus calificaciones y se redujeron los suspensos.

Con todo, el método de Mighton no es el único que pulula por la atmósfera docente como una alternativa al sistema de enseñanza tradicional. Otros como el sistema Kumon o el Algoritmo ABN también han tenido gran aceptación entre familias y maestros. La diferencia entre su método y los demás, sostiene Mighton, es que Jump Math quiere "romper con ese problema de la percepción de la capacidad del alumno". "Muchos programas solo miran las mates y nosotros miramos las mates y la psicología. Hacemos una evaluación constante y continua de cómo va el alumno, no esperamos a un examen un día determinado", asevera.

http://elpais.com/elpais/2017/03/02/mamas_papas/1488489539_151680.html?id_externo_rsoc=FB_CM



MÁS INFORMACIÓN




Principios básicos del procedimiento JUMP Math

Adquisición de confianza
Dinamiza el aula para que todos y cada uno de los estudiantes adquieran la confianza necesaria para descubrir, intentar y aprender.

Práctica guiada
Para adquirir conceptos y dominarlos es necesario más práctica de la que tradicionalmente hemos creído. JUMP Math se basa en que esta práctica sea orientada por el docente.

Descubrimiento guiado
Un equilibrio entre la transmisión de conocimiento y el descubrimiento puro que permite implicar al estudiante, guiándolo para que adquiera las competencias matemáticas clave.

Evaluación continua y a simple vista dentro del aula
Para ir detectando las diferentes velocidades de aprendizaje y posibles lagunas en el aprendizaje escalonado.

Instrucción rigurosamente pautada
División de las lecciones en pequeñas unidades fácilmente asimilables y perfectamente escalonadas, desarrolladas por doctores en Matemáticas y pedagogos que definen las pautas de aprendizaje adecuadas a cada concepto y competencia.

Cálculo mental
Una competencia que se ha de adquirir para poder dominar con agilidad conceptos matemáticos más complejos.

Comprensión conceptual en profundidad
Para evitar el aprendizaje de mecánicas de resolución de problemas que no estén basadas en la comprensión de conceptos y procedimientos.

miércoles, 1 de febrero de 2017

Jorge Riechmann un poquito de física, un poquito de matemáticas, un poquito de economía política1. Para entender el mundo en que vivimos. El fracaso de una sociedad basada en el crecimiento y en su destrucción de los sistemas vivos de la Tierra

“El fracaso inescapable de una sociedad basada en el crecimiento y en su destrucción de los sistemas vivos de la Tierra son los hechos apabullantes de nuestra existencia. Como resultado, casi no son mencionados en ninguna parte.

Constituyen el gran tabú del Siglo XXI, los temas garantizados para enajenar a amigos y vecinos. Vivimos como si estuviésemos atrapados dentro de un suplemento dominical: obsesionados por la fama, la moda y los tres elementos básicos aburridos de la conversación de clase media: recetas culinarias, innovaciones tecnológicas y centros turísticos.” 2 George Monbiot

Pero cómo puede ser, nos preguntamos una y otra vez, que en esta sociedad pomposamente autobautizada “del conocimiento”, donde ciertamente hemos acumulado más saber científico que en ningún momento anterior de la historia de la humanidad, toda esa masa de información y conocimiento no parezca servir de nada a la hora de evitar el colapso socioecológico hacia el que nos encaminamos…

Quizá habría que comenzar aquí con un chiste, el de Groucho Marx en Sopa de ganso: “Claro que lo entiendo, incluso un niño de cuatro años podría entenderlo. ¡Que traigan a un niño de cuatro años: a mí esto me parece chino!”3

¿Entendemos lo que deberíamos entender como niños de cuatro o diez años? Necesitamos entender tres cosas

Creo que para entender el mundo en que vivimos (y donde probablemente moriremos la mayor parte de los seres humanos, por hambre, falta de asistencia sanitaria y violencia armada, consecuencias de la crisis ecológico-social, antes de que acabe el siglo XXI) hacen falta esencialmente tres conocimientos básicos.

Un poquito de física, un poquito de matemáticas, un poquito de economía política.

El primero de estos conocimientos es la termodinámica básica, y especialmente el significado de la entropía (codificado en el segundo principio de la termodinámica).

El segundo es la dinámica de los crecimientos exponenciales (particularmente cuando se dan dentro de ambientes finitos: esto es matemática sencilla, pero habría que enmarcarla dentro de unas nociones básicas de teoría de sistemas).

El tercero de los conocimientos lo recogen las fórmulas de la reproducción ampliada del capital (D - M - D+ΔD) que Marx explica al comienzo del libro primero del Capital.

Si falta alguna de las tres piezas, no entenderemos casi nada (al propio Marx le faltó comprensión de lo que significaban las piezas uno y dos funcionando dentro de un planeta finito; pero no podemos reprochárselo demasiado, los angustiosos problemas evidentes en la segunda mitad del siglo XX sólo eran perceptibles por indicios en la segunda mitad del siglo XIX). Si entendemos cabalmente las tres piezas en su conexión recíproca, yo diría que habremos dado pasos importantes para saber en qué tipo de mundo, de verdad, estamos viviendo. Habremos encajado tres piezas de conocimiento en el mosaico que hoy nos hace falta –en esa “ecología de los saberes” que preconiza Boaventura de Sousa Santos— para tratar de hacer frente a la crisis ecológico-social.

Un poquito de física: termodinámica básica 4

Si –por la primera ley de la termodinámica-- la materia-energía no se pierde, sino que solamente se transforma, ¿no desaparecen como por ensalmo todos los problemas de límites al crecimiento económico que preocupan a los ecologistas?

Pues no, a causa del segundo principio (o la segunda ley) de la termodinámica – entre otras razones--. Los diversos tipos de energía no son igualmente convertibles en trabajo útil. Si se quiere decir de otra forma: existen formas de energía de “buena” y “mala” calidad para nosotros. La segunda ley establece que, en un sistema aislado, la entropía (desorden atómico o molecular) aumenta inevitablemente.5

DOS CANTARES DE ANTONIO MACHADO PARA EXPLICAR TERMODINÁMICA 
[Primer principio de la termodinámica] [Segundo principio de la termodinámica]

¿Dices que nada se crea? No te importe, con el barro de la tierra, haz una copa para que beba tu hermano.

¿Dices que nada se pierde? Si esta copa de cristal se me rompe, nunca en ella beberé, nunca jamás.

Antonio Machado: Proverbios y cantares, EL PAÍS/ Clásicos del siglo XX, Madrid 2003, p. 19 y 21.

La entropía es una medida de la disponibilidad de la energía: mide la cantidad de energía que ya no se puede aprovechar transformándola en trabajo. Un aumento de la entropía supone una disminución de la energía disponible: ni el carbón ni el petróleo pueden quemarse dos veces. Podemos vincular la idea de entropía con los recursos naturales que empleamos para nuestra subsistencia de la siguiente forma: el recurso natural más básico y fundamental es la materia-energía de baja entropía (vale decir: materia-energía con alto grado de orden y disponibilidad). 

El mineral de hierro con alta concentración de metal es un recurso precioso para nosotros, mientras que el hierro disuelto en el océano es prácticamente inutilizable.

En la Tierra existen de forma natural “depósitos de baja entropía”, islas de entropía negativa o “neguentropía” que desde los comienzos de la Revolución Industrial hemos ido agotando rápidamente: se trata de las reservas de combustibles fósiles, los yacimientos minerales, etc. Dilapidar de forma irresponsable la riqueza natural que constituyen estos “depósitos de baja entropía” restringe cada vez más las opciones vitales de los seres humanos que nos sucederán. En cierto sentido, el imperativo de una sociedad ecológicamente sustentable podría formularse como un imperativo de minimización de entropía.

5 La tercera ley de la termodinámica viene a decir, más o menos, que nada puede enfriarse hasta el cero absoluto. “Si, para un jugador, la primera ley equivaldría a no puedes ganar, la segunda ley sería no puedes no perder y la tercera no puedes abandonar el juego” (Eric D. Schneider y Dorion Sagan, La termodinámica de la vida, Tusquets, Barcelona 2008, p. 73).

La economía convencional ha tenido en cuenta, más o menos, la primera ley de la termodinámica (conservación de la materia-energía); pero no la segunda, que es incomparablemente más importante que la primera a efectos prácticos. Si uno observa la representación clásica del proceso económico en los manuales al uso, verá que en realidad se trata de una máquina de movimiento perpetuo, o sea, un objeto imposible. La termodinámica enseña que esos diagramas circulares, ese movimiento pendular entre producción y consumo en un sistema completamente autárquico, no corresponde a la realidad. El hecho de que el sistema económico se halle inserto dentro de sistemas biofísicos que forman una biosfera altamente compleja, y que dependa para su funcionamiento de fuentes de materiales de baja entropía y de sumideros para los desechos de alta entropía producidos; el hecho de que el principio de entropía gobierna todos los procesos del mundo material, sencillamente se ignora en la economía convencional.

En cierta ocasión, en una audiencia ante el Congreso estadounidense en 1973, el economista Kenneth E. Boulding (1910-1993) afirmó que “quien crea que el crecimiento exponencial puede durar eternamente en un mundo finito, o es un loco o es un economista”. 6

Podríamos parafrasear la humorada del modo siguiente: quien crea que se puede violar la ley de la entropía, o es un loco o es un economista convencional. Pues, en efecto, los economistas convencionales tienen tantos problemas con la ley de la entropía como con los fenómenos de crecimiento exponencial en sistemas cerrados (y por razones parecidas).

La economía ecológica, por el contrario, sitúa la segunda ley de la termodinámica en el centro de sus reflexiones. Parte de la premisa de que el proceso económico es entrópico en todas sus etapas materiales. 7

La segunda ley de la termodinámica tiene importantes implicaciones económico-ecológicas. Lo que muestra es esencialmente que la actividad económica está constreñida por ciertos límites insuperables:

(I) Límites al reciclado: el reciclado perfecto es imposible. Sólo se puede recuperar una parte; siempre hay un resto que se pierde irrecuperablemente. Los neumáticos pueden reciclarse; las partículas de neumático adheridas al asfalto no. El plomo de las baterías puede recuperarse en un alto porcentaje; el plomo

6 Se atribuye este dicho a Boulding en United States Congress House (1973), Energy reorganization act of 1973: Hearings, Ninety-third Congress, first session, on H.R. 11510. p. 248.

7 El hombre a quien se debe el mayor esfuerzo por integrar termodinámica y economía en una reflexión unitaria es el economista rumano exiliado a EEUU Nicholas Georgescu-Roegen (1906-1994). Una breve introducción a su vida y obra es “La economía ecológica de Nicholas Georgescu-Roegen” de Joan Martínez Alier, capítulo 1 de su libro De la economía ecológica al ecologismo popular (Icaria, Barcelona 1992). Óscar Carpintero nos brindó el soberbio estudio La bioeconomía de Georgescu-Roegen (Montesinos, Barcelona 2006) y preparó la edición de Ensayos bioeconómicos de Nicholas Georgescu-Roegen (Catarata, Madrid 2007).

emitido a la atmósfera junto con los gases de escape de los automóviles no. El cierre total de los ciclos es imposible, y las pérdidas de materia inevitables.

Por lo demás, el problema se desplaza pronto al terreno de la entropía energética (reciclar exige siempre utilizar energía, en cantidades que pueden ser muy grandes, inabordables); y a menudo lo que hacemos es “infraciclar” más que reciclar, como cuando rompemos en mil pedazos valiosos recipientes de vidrio (en vez de reutilizarlos), con la pérdida estructural y energética en que incurrimos entonces…

Algún optimista tecnológico insuficientemente consciente de los límites que las leyes de la termodinámica imponen a la ecologización de la economía ha postulado que “los elementos químicos que constituyen los recursos del planeta pueden ser reciclados y reutilizados indefinidamente, siempre y cuando la energía necesaria para recogerlos y refinarlos esté disponible”.

8 Ahora bien: sin entrar en otros problemas que plantearía la extremosidad de este planteamiento, el reciclado perfecto es un imposible termodinámico, y por eso esta supuesta solución falla. Un ejemplo aducido a veces en este contexto prueba en realidad lo contrario de lo que se supone que tendría que probar. “A pesar de su enorme dispersión, más de la mitad del oro extraído hasta ahora sigue controlado hasta hoy día, siendo reunido cuando es necesario gastando energía”.

" 9 El ejemplo se vuelve contra la intención de quien lo propuso: a pesar de que el oro ha sido un metal valiosísimo para todas las civilizaciones, y de que los seres humanos lo han reunido, atesorado y conservado (o sea, reciclado) como ningún otro material en toda la historia humana, sólo algo más de la mitad de todo el oro extraído en toda la historia humana está hoy disponible. ¡Piénsese lo que ha ocurrido y ocurrirá con materiales menos preciados! Y no vale replicar que, con las escaseces crecientes o con los nuevos impuestos ecológicos, el latón o el papel llegarán a ser tan valiosos como el oro: sería una salida por la tangente fraudulenta, que no tendría en cuenta hechos termodinámicos básicos, por no hablar de los supuestos irreales sobre la organización social y la psique humana. 10

8 Aunque esto lo dice mi admirado Barry Commoner (En paz con el planeta, Crítica, Barcelona 1992, p. 142), en esta ocasión yerra…

9 Commoner, En paz con el planeta, p. 142.

10 El ejemplo anterior muestra que lo valioso desaparece de donde debía estar, pero la entropía crea igualmente problemas de signo contrario: lo dañino aparece donde no debía estar. Así, un estudio de la FDA estadounidense (Agencia Alimentaria y del Medicamento) hecho público en marzo de 2004 muestra que la acrilamida –un potente cancerígeno— está presente en el 27’7% de los alimentos en la cesta de la compra promedio en EE.UU. (en cantidades superiores a 10 microgramos por kilo de alimento). Véase Emilio de Benito, “Hallada acrilamida en el 27% de los alimentos de EE.UU.”, El País, 27 de marzo de 2004.

En definitiva, el reciclado perfecto es imposible; y precisamente podríamos enunciar el segundo principio de la termodinámica también de la siguiente forma: la energía no puede reciclarse, y la materia no puede reciclarse nunca al 100%. 11

(II) Límites al aprovechamiento de los recursos naturales. Detrás de las distintas leyes de rendimientos decrecientes con que tropieza el género humano se halla por lo general la estructura entrópica de nuestro mundo. Por ejemplo, en lo que se refiere a los recursos naturales: a medida que consumimos los mejores yacimientos minerales, los depósitos de combustibles fósiles más accesibles, sólo nos van quedando (en una corteza terrestre progresivamente más desorganizada) depósitos de materia-energía con mayor entropía, y por ello menos disponibles, menos útiles, menos aprovechables y cada vez más caros de explotar. “Cada vez nos acercamos más al momento en que la obtención de una tonelada de petróleo implique el consumo de tanta energía como la que contiene ese petróleo. En esa tesitura de nada sirve ya la sabiduría del economista, según la cual todo es sólo una cuestión de precios, pues el precio debe ser pagado en la única divisa fuerte de este mundo, a saber, en energía”.12 Si la civilización minera que ha desarrollado el capitalismo fosilista prosigue su loca huida hacia adelante, y seguimos desorganizando la corteza terrestre de nuestro planeta y único hogar cósmico, cada vez nos acercaremos más al estadio de ese “puré póstumo” o crepuscular que con humor negro ha evocado en más de una ocasión José Manuel Naredo.13

PRODUCCION Y CONSUMO A LA LUZ DE LA TERMODINAMICA
"Producir es para los economistas [convencionales] llevar a cabo actividades que generen ingresos o valor añadido; se habla de producir petróleo como se habla de producir trigo sin tener en cuenta que las dos actividades son totalmente diferentes respecto a la periodicidad, es decir, a su relación con la naturaleza, a la relación entre el tiempo biogeoquímico y el tiempo económico. Una consiste en extraer una parte de un stock, de un fondo ya existente, mientras que la otra consiste básicamente, en el caso de la agricultura tradicional, en captar energía solar, que llega como un flujo renovable, y transformarla en la energía de los alimentos. O se afirma que la agricultura de los EE.UU. es más productiva que la de México, aunque utilice mucho los recursos energéticos no renovables, y a pesar de que la agricultura del sur de México --en peligro por culpa del NAFTA-- es energéticamente más eficiente y además ha conservado mucha más biodiversidad.

(...) [Para los economistas convencionales] todo es escaso únicamente a corto plazo, porque a largo plazo se cree ciegamente en el cambio técnico, en la posibilidad de la sustitución sin límites: de apropiarse cada vez de nuevos recursos naturales, de utilizarlos sin crear problemas ambientales, y además de sustituir recursos naturales por capital --sin tener en cuenta el hecho elemental de que el capital es también fruto del trabajo y los recursos naturales.

El concepto de consumo como destino final de los bienes producidos también puede cuestionarse si tenemos en cuenta que, por la ley de conservación de la materia, todo lo utilizado por las empresas y los consumidores, antes o después, o bien es reciclado o bien vuelve a la naturaleza.

(...) Por consiguiente no se justifica la distinción habitual de los economistas entre los bienes producidos, que tienen un valor de cambio, y los bienes que se suponen libres --como el aire que respiramos-- de los que se considera que se dispone de una cantidad determinada independientemente de cuál sea la actividad económica. En realidad, los bienes considerados libres se ven afectados a menudo --y a veces de forma irreversible-- por las actividades de extracción, de producción, de consumo y de generación de residuos, aunque las externalidades o costes ecológicos y sociales de estas actividades no entran dentro de la contabilidad de las empresas y de los consumidores."14

(III) Límites al crecimiento. Los productivistas suelen argumentar que la preocupación por el medio ambiente más bien refuerza que debilita la necesidad de crecimiento económico, pues --según ellos-- la protección y la restauración del medio ambiente exigen recursos económicos que previamente deben conseguirse mediante más crecimiento. (Obsérvese que todas las políticas ecokeynesianas y socialdemócratas salpimentadas de verde presuponen este argumento.) Pero este argumento, en primer lugar, encierra una petición de principio, pues el medio ambiente no sólo puede conservarse mediante la reparación del daño causado, sino evitando las actividades que ocasionan el daño.

El ecólogo Antoni Farràs equiparaba el proceder del productivista con el de un hombre que se deja cortar un dedo a cambio de dinero para pagar con ese dinero los trabajos de un cirujano y un ortopedista fabricante de dedos artificiales, que le implantan la prótesis correspondiente: prótesis que naturalmente nunca hubiese necesitado si no se hubiese dejado cortar el dedo.

Y en segundo lugar, se trata de un completo contrasentido cuando nos hallamos ya –como es el caso— en situación de overshoot o extralimitación. Podemos fechar, con cierta exactitud, el momento en que las demandas colectivas de la humanidad superaron por vez primera la capacidad regenerativa de la Tierra: según un grupo de científicos dirigidos por Mathis Wackernagel –uno de los creadores del concepto de “huella ecológica”— eso sucedió hacia 1980, y ya treinta años más tarde nuestras demandas excedían esa biocapacidad de la Tierra en un 50% aproximadamente.15 Usar los recursos y las capacidades regenerativas de una Tierra y media es vivir de manera abismalmente nihilista, como si no hubiera un mañana.

Pretender que para proteger el medio ambiente lo que necesitamos es más crecimiento económico constituye un absurdo que sólo se mantiene mientras se mantenga la desconexión entre la economía monetaria (el “cajón de sastre de la producción de valor”, lo llama José Manuel Naredo) y su soporte biofísico.

Desde la perspectiva de una economía ecológica consciente de los rudimentos de la termodinámica es un disparate: equivale, directamente, a negar el principio de entropía. 16

“La fórmula mágica 'necesitamos crecimiento económico para poder pagar la protección del medio ambiente' es una manifestación fundamental de la ignorancia de la entropía. Las consecuencias negativas para el medio ambiente de la correspondiente adición al crecimiento serían superiores a los beneficios derivados de esa protección técnica del medio ambiente, aun cuando esa adición se dedicase en su integridad a protección técnica. Así lo determina el segundo principio de la termodinámica.”17

Aquí topamos, de nuevo, con una ley de rendimientos decrecientes de fundamento entrópico. Podemos verlo bien con un ejemplo: la eliminación de contaminantes atmosféricos como los óxidos de nitrógeno y el dióxido de azufre.

18 Es relativamente barato eliminar hasta el 75% de las emisiones por medio de tecnologías “de final de tubería”: a partir de ahí los costes se disparan exponencialmente, hasta hacerse literalmente impagables, y es imposible eliminar el 100% de la contaminación. Queda siempre, por tanto, un resto ineliminable por razones económicas en primer término y entrópicas en última instancia (puede ser entre un 5 y un 15% en el ejemplo que nos ocupa); en un nivel alto de emisiones, este 5-15% puede estar por encima de los niveles asumibles. Más crecimiento económico no puede mejorar el problema, sino sólo empeorarlo.

Por otro lado, es sencillamente falso que todos los efectos perniciosos del crecimiento económico sean reversibles: no lo son la erosión del suelo, ni la eliminación de especies vivas, ni la concentración de tóxicos organoclorados en las cadenas tróficas, ni el agotamiento del petróleo u otros recursos energéticos; ninguna cantidad adicional de recursos permitirá convertir los desechos radiactivos en isótopos fisionables. Siendo la contaminación en lo esencial un amasijo de elementos en intrincada mixtura, su reversión resulta muchas veces desesperadamente costosa o simplemente imposible: pues vivimos en un mundo en el que tiene vigencia el principio de entropía.

(IV) Límites al progreso técnico. Algunos adictos al crecimiento económico reaccionaron a las malas noticias contenidas en el informe al Club de Roma Los límites del crecimiento (1972) y otros estudios semejantes postulando un hipotético crecimiento exponencial de la tecnología que nos sacaría siempre las castañas del fuego. Pero se trata de una ilusión. Las leyes de la termodinámica también imponen límites inflexibles a la eficiencia de nuestra tecnología.

El teorema de Carnot --bautizado con el nombre del descubridor de la termodinámica, el ingeniero francés Sadi Carnot-- impone límites últimos a la eficiencia de los motores. En esencia, lo que afirma este importantísimo resultado es que el rendimiento de una máquina 19 es igual a la unidad menos el cociente entre la temperatura de la fuente fría y la temperatura de la fuente caliente. Es decir, hay una fracción máxima de energía térmica que se puede transformar en energía mecánica, y esta fracción sólo depende de la diferencia de temperaturas entre la fuente caliente y la fuente fría (entre el estado inicial y el estado final), con independencia del tipo de motor que consideremos y del tipo de sustancia con que opere. Cuanto menor sea la diferencia de temperaturas entre el estado inicial y el final, menor será la eficiencia del motor.

“La mayoría de las modernas centrales eléctricas utilizan vapor a temperaturas de aproximadamente 800 K (527 grados centígrados) y fuentes frías de aproximadamente 373 K (100 grados centígrados). Su rendimiento límite se sitúa por tanto alrededor del 54%, aunque otras pérdidas lo reducen hasta el 40%. Los rendimientos mejorarían si se usaran temperaturas más altas en la fuente caliente, pero esto introduciría nuevos problemas, ya que los materiales empezarían a fallar. Por razones de seguridad, los reactores nucleares operan con temperaturas de la fuente caliente más bajas (unos 620 K, 350 grados centígrados) que limitan su rendimiento teórico al 40%, e incluso al 32% si contamos las pérdidas. Por citar ejemplos de otros sistemas relacionados con la vida cotidiana, el motor de automóvil funciona con una temperatura de entrada de más de 3300 K (alrededor de 3000 grados centígrados) mantenida durante un tiempo muy corto, y expulsa los gases a una temperatura de alrededor de 1400 K (1000 grados centígrados) con un rendimiento teórico del 56%. En realidad, los motores de automóvil siguen un diseño ligero para conseguir buenas prestaciones de facilidad de respuesta y movilidad, por cuya razón alcanzan un rendimiento de menos del 25%”.20

La importancia del teorema de Carnot es que establece un límite absoluto para el rendimiento de las máquinas, un límite independiente de la inventiva de nuestros científicos e ingenieros.

“Una ilustración de la fuerza de las leyes de la termodinámica es que en muchas situaciones se pueden usar para predecir la eficiencia máxima que se puede lograr con una máquina perfecta, sin especificar detalle alguno de ella. (La eficiencia se puede definir en este caso como la proporción entre el trabajo útil y el flujo total de energía.) Así, se puede especificar, por ejemplo, la cantidad mínima de energía necesaria para separar la sal del agua marina, los metales de sus minerales y los contaminantes de los escapes de los automóviles sin conocer detalles de lo que se podría inventar en el futuro para lograr estos propósitos. De manera similar, si se conoce la temperatura de una fuente de energía termal (como, por ejemplo, una roca caliente en las profundidades de la corteza terrestre) se puede calcular fácilmente la eficiencia máxima con que esta energía térmica se puede convertir en trabajo aplicado, independientemente de la habilidad de los inventores futuros. En otras palabras, existen límites fijos a la innovación tecnológica, colocados allí por las leyes fundamentales de la naturaleza”.21

Es hora de ir concluyendo este apartado. En buena medida, la crisis ecológica actual puede interpretarse como un salto en el aumento de entropía dentro de la biosfera, y un debilitamiento de los mecanismos de reducción de entropía de la propia biosfera (que proceden, esencialmente, de la capacidad de conversión de energía solar en energía bioquímica que todos los habitantes de la biosfera debemos a los organismos fotosintetizadores); salto y debilitamiento producidos por la actividad humana. Como ha sintetizado magistralmente Daly:
“Una característica de la Revolución Industrial cuyas implicaciones no se aprecian suficientemente es el cambio al uso de los combustibles fósiles y los materiales minerales. Este es un cambio de la explotación de la superficie de la Tierra a la explotación del subsuelo; o como dice Georgescu-Roegen (1971), es un cambio de la dependencia de la energía proveniente a cada momento del sol a la energía almacenada en la Tierra. (...) La Revolución Industrial ha cambiado la dependencia, de un fuente relativamente abundante [la luz solar] a otra relativamente escasa del recurso final: la materia-energía de baja entropía.”22

Para superar la crisis ecológica y reconstruir nuestras sociedades de forma que resulten sustentables (es decir, ecológicamente compatibles con la biosfera en el largo plazo) es necesario un gran esfuerzo colectivo para invertir la tendencia al desbordamiento de entropía que hoy impera. Esquemáticamente, se trataría de aprovechar la energía disponible de la luz solar para reducir la entropía material de nuestro mundo. Para ello es necesario conservar o regenerar la productividad natural de la biosfera, basada en la fotosíntesis de las plantas verdes, la preservación de la biodiversidad y el correcto funcionamiento de los ciclos biogeoquímicos del planeta; realizar la transición desde el sistema energético actual (basado en los combustibles fósiles y la energía nuclear) a un sistema energético basado en las energías renovables; y “cerrar los ciclos” de la producción industrial y agrícola, alimentándola con energías renovables.

Finalmente, una observación general: un aspecto de mucho interés en relación con la entropía es que no deberíamos verla sólo como factor limitante, sino también capacitante.

23 La entropía no es sólo, o esencialmente, una fuerza destructiva: también es creativa. “La naturaleza aborrece los gradientes”, vale decir las diferencias naturales de temperatura, presión y concentración química: así reza el que quizá sea el lema principal de la comprensión de la “termodinámica de la vida” que se desarrolló en la segunda mitad del siglo XX.

La reducción de los gradientes energéticos es lo que crea diversas clases de sistemas complejos en el universo y, a la postre, la vida; por eso la segunda ley no es sinónimo de movimiento inexorable hacia la muerte térmica o el equilibrio (contra las metáforas que empleó la termodinámica del siglo XIX). “La vida, como el universo, fluye termodinámicamente corriente abajo. Somos remolinos en un mar termodinámico, parte del proceso de un universo lleno de energía vivificadora”.24 O como dice animosamente Carlos de Castro: “El universo aborrece los gradientes energéticos, la desigualdad. Lo importante no es la meta, lo importante es el largo y creativo camino hacia esa muerte térmica en el lejanísimo futuro (una vez más física y Tao parecen conectar)”.25

Un poquito de matemáticas: Crecimientos exponenciales en ambientes finitos 
Se supone que el comportamiento de las funciones exponenciales se aprende en las matemáticas del bachillerato, ¿verdad? O a lo más tardar en un primer curso universitario de análisis matemático… Pero entonces ¿es posible que nuestras sociedades productivistas/ consumistas avancen con la decisión con que lo hacen hacia la catástrofe preprogramada porque no acaban de entender lo que es una función exponencial? ¿Tan mal andamos de matemática básica?

En lo que hace a nuestro mundo de las muchas crisis, hemos de recordar algunos hechos básicos sobre crecimientos exponenciales en ambientes finitos. Nos servirá un apólogo francés que ya se usó, en su momento, en los primeros informes del Club de Roma: hay un estanque con nenúfar que tiene una sola hoja.

Cada día se duplica el número de hojas, o sea, dos hojas el segundo día, cuatro el tercero, ocho el cuarto, y así sucesivamente. Ahora, si el estanque está lleno el día treinta, podemos preguntar, ¿en qué momento está lleno hasta la mitad?

Respuesta: el día veintinueve. Reparemos además en que en el día 26 apenas 1/16 de la superficie del lago (poco más del 6%) está cubierto de nenúfares… El colapso parece lejano, y sin embargo la rapidísima dinámica de crecimiento lo ha situado ya muy cerca de nosotros. Y lo terrible es que hoy, en realidad, nosotros ya estamos en el día treinta y uno... aunque mayoritariamente nos seguimos negando a reconocerlo. Los psicólogos han mostrado que la gente tiende a subestimar en gran medida las dinámicas de crecimiento exponencial. 26

Veamos un ejemplo, que George Monbiot toma del banquero de inversiones Jeremy Grantham.27 Imaginemos que en 3030 a. de C.28 las posesiones totales del pueblo de Egipto llenaban un metro cúbico; no es gran cosa, en realidad podríamos pensar en las propiedades de un solo egipcio… Propongamos que esas posesiones crecieron al 4,5% por año.

“¿Qué tamaño hubiera tenido esa pila al llegar la Batalla de Actium en 30 a. de C.? (La trayectoria de la tasa de crecimiento compuesto muestra que la erosión del planeta solo acaba de comenzar. Simplemente no podemos seguir por el mismo camino.) Continuemos, adivina.


¿Diez veces el tamaño de las pirámides? ¿Toda la arena del Sahara? ¿El Océano Atlántico? ¿El volumen del planeta? ¿Un poco más? Es 2.500 trillones (1018) de sistemas solares. No se precisa mucho tiempo, al considerar ese resultado, para llegar a la paradójica posición de que la salvación reside en el colapso. Tener éxito sería destruirnos. Fracasar es destruirnos. Es el atolladero que hemos creado. (…) La trayectoria del crecimiento [según tasas de interés] compuesto muestra que la erosión del planeta acaba sólo de comenzar. A medida que el volumen de la economía global se expande, todo sitio que contenga algo concentrado, poco usual, precioso, será buscado y explotado, sus recursos extraídos y dispersados, las diversas y diferenciadas maravillas del mundo reducidas al mismo rastrojo gris.” 29

El “tema de nuestro tiempo”, no me canso de repetirlo, 30 es el choque de las sociedades industriales contra los límites biofísicos del planeta. Crecimientos exponenciales en el uso de los recursos naturales y de los servicios ecosistémicos son imposibles de mantener, pero las políticas dominantes –al servicio de la reproducción ampliada del capital-- se empecinan en ello 31…

LA IRRACIONALIDAD DEL CRECIMIENTO PERMANENTE DE CUALQUIER MAGNITUD RELACIONADA CON EL MUNDO FÍSICO

(A) Si la población humana siguiera creciendo a una tasa cercana al 2% actual, en menos de dos milenios alcanzaría una masa similar a la de la Tierra. De continuar el crecimiento exponencial, en pocos milenios más su masa se aproximaría a la estimada para el conjunto del universo. 32

(B) Como planteaba elocuentemente George Monbiot en 2002: “El capitalismo es un culto milenarista, elevado al rango de religión mundial. (...) Igual que los cristianos imaginan que su Dios los salvará de la muerte, los capitalistas creen que los suyos los librarán de la finitud. A los recursos del mundo, aseveran, les ha sido garantizada la vida eterna. Basta una reflexión breve para mostrar que esto no puede ser verdad. Las leyes de la termodinámica imponen límites intrínsecos a la producción biológica. Incluso la devolución de la deuda, el pre-requisito del capitalismo, resulta matemáticamente posible sólo a corto plazo.

Heinrich Haussmann ha calculado que un simple pfennig invertido al 5% de interés compuesto en el año cero de nuestra era sumaría hoy un volumen de oro de 134.000 millones de veces el peso del planeta. El capitalismo persigue un valor de producción conmensurable con el reembolso de la deuda…”33 La producción material no puede crecer al ritmo del interés compuesto con que se acumulan las deudas (o los retornos de las inversiones):
pero ese imposible es un supuesto básico del capitalismo.

(C) Si el consumo de energía siguiese creciendo al 2’3% anual (eso supone un incremento de “factor diez” cada cien años), ¿Cuánto tardaríamos en alcanzar el máximo posible de captación de energía solar, por ejemplo con células fotovoltaicas? Suponiendo para éstas un rendimiento del 20% (actualmente no supera el 15%), y teniendo en cuenta que las tierras emergidas suponen el 28% de la superficie del planeta, se podría aspirar a captar un máximo de 7.000 terawatios (Tw; esto es, unas 600 veces el consumo actual de unos 12 Tw).

Parece un margen grande… pero creciendo el consumo al 2’3% anual, ¡se alcanzaría en apenas 275 años! Y eso ¡cubriendo cada metro cuadrado de tierra con paneles fotovoltaicos –suponiendo implausiblemente que existiesen en el planeta suficientes materiales para fabricarlos! No quedaría tierra disponible para cultivar alimentos o construir viviendas, ni aunque se tratase apenas de minipisos para minieuristas…34

D) Otro cálculo sobre energía. “Todo científico afirmará que el crecimiento indefinido de cualquier parámetro físico es imposible. La utilización de energía en todo el mundo ha aumentado aproximadamente un 3% anual durante los dos últimos siglos. A este ritmo, las actuales 16 teravatios (TW) de demanda energética global se dispararían hasta igualar la producción total del sol en unos mil años, y en el plazo de dos mil años igualarían la energía de los 100.000 millones de estrellas que existen en nuestra galaxia. Pero mucho antes de eso –en los próximos cuatrocientos años- el calor directo generado en la Tierra sería suficiente para incrementar su temperatura superficial hasta los cien grados centígrados, la del agua hirviendo. Se podrían hacer cálculos parecidos sobre incremento de la población, consumo de recursos o cualquier otro parámetro que haya experimentado un crecimiento sostenido durante los últimos siglos. Evidentemente, el mundo ‘normal’ del crecimiento es una anomalía pasajera condenada a autodestruirse de forma natural.”35

Entre 1950 y 2000 la economía mundial se multiplicó aproximadamente por cinco. Pero si continuase creciendo al mismo ritmo ¡en 2100 sería ochenta veces mayor que en 1950! Como señala Tim Jackson, “esta extraordinaria aceleración de la actividad económica no tiene ningún precedente histórico, y está completamente reñida con nuestro conocimiento científico relativo a la base finita de recursos y a la frágil ecología de la que depende nuestra supervivencia”.

36 Como en otras dimensiones de la crisis socioecológica, en lo referente al calentamiento climático se nos escapa la rapidez de los cambios movidos por dinámicas de crecimiento exponencial: nuestra intuición no está a la altura. No nos damos cuenta de lo que está pasando… y además hay poderosos grupos de interés que hacen cuanto pueden para que sigamos sin darnos cuenta.

“En los últimos treinta años [1980-2010, aproximadamente] se ha emitido a la atmósfera una cantidad de GEI equivalente a la mitad de la emitida en toda la historia de la humanidad. Es muy probable que, veinte o treinta años antes del final del siglo pasado, hubiéramos estado a tiempo de encontrar una trayectoria colectiva en términos de emisiones que hubiera impedido llegar hasta aquí, cuando las respuestas ya no pueden ser incrementales y no se producirán, en su caso, sin severos sacrificios. (…) Que todo esto podía ocurrir se sabe desde hace más de cincuenta años, pues ya el presidente Lyndon B. Johnson advirtió del peligro en el Congreso de los EEUU en los años sesenta [del siglo XX]. Sin embargo, décadas de negacionismo sofisticadamente organizado y de freno al pensamiento sistémico como elementos de la expansión ultraliberal programada nos han llevado hasta aquí.”37

La reducción en el uso de energía y materiales necesaria para que las economías de los países ricos fuesen más o menos sostenibles (paliando las desigualdades Norte/ Sur) está alrededor del 90% (según los cálculos del proyecto Towards Sustainable Europe en 1993-1996). Si esto se quisiera lograr con medidas de ecoeficiencia, sería posible –comenta Joachim Spangenberg— en medio siglo, operando con un “factor 10”. Pero si en este tiempo la economía siguiera creciendo al 2% necesitaríamos un “factor 27”, y si creciera al 3% --¡el umbral que suele aducirse para la creación neta de empleo en una economía como la española!— un “factor 45”… El crecimiento exponencial dentro de ambientes finitos plantea problemas que sencillamente no tienen solución. En un planeta finito, con seres finitos como somos los humanos, la sustentabilidad es incompatible con un sistema económico que necesita vender cantidades siempre crecientes de mercancías –sin límite—para subsistir. Puedes tener sustentabilidad, o puedes tener capitalismo, pero no puedes tener ambos a la vez. Para terminar de entender esto, nos hace falta asomarnos a la economía política.

Un poquito de economía política: reproducción ampliada del capital 
Numerosos filósofos, a lo largo de la historia del pensamiento, alabaron las virtudes del comercio como práctica pacificadora y civilizadora de las relaciones humanas. Para llegar a tales conclusiones se centraban en el intercambio de bienes equivalentes, donde cada una de las dos partes remediaba una carencia con el bien que recibía de la otra parte, y ambas anudaban así un vínculo social.

Pero importa aquí subrayar que los intercambios comerciales que no buscan satisfacer necesidades, sino amasar capital, no conducirán a esa socialidad enriquecida. Aquí hay que recordar el clásico análisis de Marx al comienzo del libro primero del Capital: el trueque (intercambio de un bien por otro diferente) representa el método más simple y antiguo de intercambio (podemos simbolizarlo así: M-M*).

El uso del dinero como medio de intercambio supera las limitaciones del trueque, dando lugar a la producción simple de mercancías (“vender para comprar”): MD-M*.

Aquí la suma de dinero D es instrumental para lograr una mejora en la satisfacción que procuran los valores de uso. 38

Pero el cambio crítico ocurre con el siguiente paso histórico, que Marx llama circulación mercantil capitalista (“comprar para vender”): D-M-D*, donde D* representa una suma de dinero mayor que D (es decir, D* = D+ΔD).

39 Aquí el objetivo no es lograr mejor valor de uso, sino la expansión del valor monetario de cambio. La dinámica ya no es la satisfacción de necesidades humanas, sino la valorización del valor –que en su esencia carece de todo límite. “El dinero que con su movimiento se ajusta a ese último tipo de circulación se transforma en capital” (p. 180). Y comenta el economista Herman Daly:
“La desviación del enfoque del valor de uso al valor de cambio [que acontece con la circulación mercantil D-M-D*] es crucial. La acumulación de bienes y valores de uso es autolimitante. (...) [Pero] el valor de cambio de los bienes en general, abstraído en forma de dinero, se torna el centro de la acumulación. No hay nada que limite el valor de cambio abstracto que se puede tener. A diferencia de los valores de uso concretos, que se arruinan o se deterioran cuando se acaparan (debido a la entropía), el valor de cambio abstracto se puede acumular indefinidamente sin costes de deterioro o de almacenamiento. De hecho, el valor de intercambio abstracto crece por sí mismo, dando intereses, y luego intereses sobre los intereses. Marx, y Aristóteles antes que él, señalaron el peligro de este fetichismo del dinero.

(...) En nuestra época este proceso histórico de abstraerse cada vez más del valor de uso ha sido llevado quizás al límite en la así llamada ‘economía de papel’ [o de apuntes electrónicos, más bien: J.R.], que puede ser simbolizada como D-D*, la conversión directa de dinero en más dinero sin referencia a los bienes ni siquiera como un paso intermedio.”40

En los mercados capitalistas se produce, vende e invierte con el objetivo de maximizar los beneficios, y la rueda de la acumulación de capital no cesa de girar. (En una economía ecosocialista se perseguiría, por el contrario, el equilibrio: habría que pensar en algo así como una economía de subsistencia modernizada, con producción industrial pero sin crecimiento constante de la misma.) 41

La ciega dinámica valorización del valor es la fuerza que hoy nos está impulsando con tanta fuerza hacia el colapso socio-ecológico. El capitalismo es la civilización de la hybris. Su dinámica lleva a la destrucción de cualquier clase de barreras que pongan trabas a la generación de beneficios y la acumulación de capital. Si las características fisiológicas de los organismos vivos obstaculizan las estrategias de maximización que se valen de la ingeniería genética, el capital aliado con la tecnociencia tratará de dar el salto a la biología sintética (construyendo organismos nuevos desde su misma base molecular). Si el carácter finito de la biosfera terrestre limita la expansión económica, tratarán de dar el salto al cosmos, escapando del planeta Tierra. Si las capacidades físicas y psíquicas del ser humano son factores limitantes, tratarán de dar el salto más allá de Homo sapiens, promocionando un “transhumanismo” que se valdrá de herramientas cibernéticas, informáticas, biotecnológicas, nanotecnológicas… La cultura capitalista es un grito de guerra contra los límites. La sabiduría de la autocontención le resulta por completo ajena.

La conclusión de este mínimo apunte de “ecología de saberes” podría ser entonces: 
I) hemos de asimilar de verdad la dimensión entrópica de los procesos económicos. 
II) Necesitamos con urgencia transitar hacia formas de economía que no precisen el crecimiento constante, y no sólo eso: ha de decrecer el “transumo” o flujo metabólico (la materia-energía de baja entropía) que estamos empleando para generar bienes y servicios. 
III) Para ello resulta imperativo superar el capitalismo.

Mínimo apunte sobre teoría de sistemas
Los seres humanos somos (igual que los demás seres vivos) interdependientes y ecodependientes. Formamos parte de sistemas complejos adaptativos (ecosistemas)42 y del “sistema de ecosistemas” que es la biosfera, con múltiples bucles de retroacción. ¿Qué son estos?
Una noción básica y central en teoría de sistemas es la de los bucles de retroalimentación o retroacción o realimentación (feedback loops). La idea viene de la cibernética...
“Estamos acostumbrados por la experiencia de la vida a aceptar que existe una relación entre causa y efecto. Algo menos familiar es la idea de que un efecto puede, directa o indirectamente, ejercer influencia sobre su causa. Cuando esto sucede, se llama realimentación (feedback). Este vínculo es a menudo tan tenue que pasa desapercibido.

La causa-efecto-causa, sin embargo, es un bucle sin fin que se da, virtualmente, en cada aspecto de nuestras vidas, desde la homeostasis o autorregulación, que controla [entre otros parámetros] la temperatura de nuestro cuerpo, hasta el funcionamiento de la economía de mercado.” 43

Si son bucles positivos, tienden a hacer crecer un sistema y desestabilizarlo (en esa medida, y si se me permite la broma, los bucles positivos resultan negativos).

Si se trata de bucles negativos tienden a mantener la integridad de un sistema y estabilizarlo. Los primeros son “revolucionarios” y los segundos “conservadores”.

“La realimentación positiva sin límite, al igual que el cáncer, contiene siempre las semillas del desastre en algún momento del futuro. [Por ejemplo: una bomba atómica, una población de roedores sin depredadores...] Pero en todos los sistemas, tarde o temprano, se enfrenta con lo que se denomina realimentación negativa. Un ejemplo es la reacción del cuerpo a la deshidratación. (...) En el corazón de todos los sistemas estables existen en funcionamiento uno o más bucles de realimentación negativa.” 44

Al estar inmersos en estas clase sistemas complejos donde “todo está conectado con todo” (o casi) mediante bucles de realimentación, sucede que --como intuyeron muchas sabidurías tradicionales-- los efectos de nuestras acciones acaban por volver sobre nosotros mismos (aquí cabría evocar incluso la noción hindú de karma). Por lo demás, es la misma dinámica de los sistemas complejos adaptativos la que conduce a las ideas de autolimitación y suficiencia:
“Los sistemas autoorganizados existen en situaciones en las que consiguen suficiente energía, pero no demasiada. Si no consiguen suficiente energía de suficiente calidad (por debajo de un umbral mínimo), las estructuras organizadas no tienen base y no se da auto-organización. Si se suministra demasiada energía, el caos se adueña del sistema, pues la energía sobrepasa la capacidad disipativa de las estructuras y éstas se derrumban. De forma que los sistemas autoorganizados existen en el terreno intermedio entre lo suficiente y lo no demasiado.”45

Ay… cuatro gatos “Primero hay que dar de comer a la gente, luego ya nos ocuparemos del medio ambiente”. Esta manera de razonar ya era falaz hace siete decenios, cuando escribía Aldo Leopold su Sand County Almanac; y hace cuatro decenios, en los debates mundiales que siguieron a la publicación de The Limits to Growth. Pues, amigos y amigas, nos pongamos como nos pongamos ¡somos interdependientes y ecodependientes!
(Por lo demás, para la mayoría de quienes así argumentan lo que de verdad está en juego no es dar de comer a la gente, sino vender mercancías obteniendo su buena tajada de beneficio.)

La mayor parte del (muy minoritario) movimiento ecologista/ ambientalista no es anticapitalista. La mayor parte del (muy minoritario) movimiento anticapitalista no es ecologista.

A unos les falta comprensión de lo que es la acumulación de capital, y cómo condiciona casi todo. A otros les falta comprensión de lo que es el cenit del petróleo, el calentamiento climático y la Sexta Gran Extinción, y cómo condicionan casi todo. En la intersección de esas dos pequeñas minorías tenemos un minúsculo grupo de ecologistas anticapitalistas (que deberían ser también feministas y animalistas) con una comprensión más o menos adecuada de dónde estamos en realidad, de en qué mundo vivimos de verdad. Los llamamos, para abreviar, ecosocialistas.

Somos cuatro gatos. Entre la realidad y la anestesia prefiero la anestesia, sigue diciendo la mayoría.
Anejo: nociones básicas de teoría de sistemas46
En el decenio de los años cuarenta del siglo XX emerge un nuevo punto de vista o "paradigma" (si empleamos este término en sentido laxo) dentro de las ciencias: el enfoque sistémico. Frente al talante analítico y reductivo de la ciencia clásica, el enfoque sistémico pone a la orden del día el estudio de las totalidades complejas.

"La ciencia clásica procuraba aislar los elementos del universo observado --compuestos químicos, enzimas, células, sensaciones elementales, individuos en libre competencia y tantas cosas más--, con la esperanza de que volviéndolos a juntar, conceptual o experimentalmente, resultaría el sistema o totalidad --célula, mente, sociedad-- y sería inteligible. Ahora hemos aprendido que para comprender no se requieren sólo los elementos sino las relaciones entre ellos --digamos, la interacción enzimática en una célula, el juego de muchos procesos mentales conscientes e inconscientes, la estructura y dinámica de los sistemas sociales, etc. (...) La teoría general de los sistemas es la exploración científica de 'todos' y 'totalidades' que no hace tanto se consideraban nociones metafísicas que salían de las lindes de la ciencia"47 .

Frente a la concepción mecanicista del mundo como caos dominante en la ciencia del siglo XIX y de los primeros decenios del siglo XX (según la cual la vida es un producto accidental de procesos físico-químicos, y la mente mero epifenómeno; se trata del paradigma analítico, positivista, mecanicista y unidireccionalmente causal de la ciencia clásica), surge desde este enfoque sistémico una interpretación del mundo como gran organización: como una jerarquía de niveles complejamente organizados. En suma, una interpretación en términos de sistemas. ¿Pero qué son sistemas?

Como primera aproximación, y si se quiere una definición muy sencilla pero no trivial, sistema es un conjunto de elementos en interacción 48

 Explicitemos:
Sistema es una totalidad, compuesta por elementos y relaciones entre estos elementos, en la que las relaciones entre los elementos son más importantes que los elementos mismos. Precisamente éste es el punto de vista que adopta la ciencia ecológica. Así, Ramón Margalef señala que en el estudio de los ecosistemas "interesa más el conocimiento de las relaciones entre los elementos interactuantes que la naturaleza exacta de estos elementos, los cuales son estudiados por alguna otra ciencia que explica sus características en función de las relaciones entre componentes de un orden inferior.

En ecología no hay que preocuparse demasiado por la organización de los seres que forman los ecosistemas y la biosfera entera, y si se desea saber sobre ellos suele acudirse a la información que proporcionan las ciencias que los estudian expresamente como la botánica, la zoología o la bacteriología."49

Por todo ello, podrían enunciarse las siguientes tres propiedades definitorias de un sistema:
(I) está constituido por elementos que mantienen entre sí relaciones de interdependencia, y estos elementos son potencialmente sustituibles por otros de naturaleza similar (sin que cambie por ello la naturaleza del sistema);
(II) la totalidad formada por el conjunto de los elementos no es reducible a la suma de esos elementos (expresado con la vaguedad tradicional, "el todo es más que la suma de las partes");
(III) las relaciones de interdependencia entre los elementos, y la totalidad resultante, son regidos por reglas susceptibles de ser expresadas en términos lógicos, es decir: las relaciones son interpretables bajo un modelo igualmente aplicable a otros sistemas. Se dan isomorfismos entre sistemas que pertenecen a ámbitos a veces muy distintos de la realidad, y por ello los sistemas son esencialmente modelizables (es posible una formulación matemático-axiomática de la teoría general de sistemas). 50

Esta definición es equivalente a la siguiente, ofrecida por el conocido filósofo argentino Mario Bunge:
"Un sistema es un todo complejo cuyas partes o componentes están relacionadas de tal modo que el objeto se comporta en ciertos respectos como una unidad y no como un mero conjunto de elementos. Y un sistema concreto es un sistema cuyos componentes son objetos concretos o cosas. Cada uno de los componentes de un sistema concreto influye sobre algunos otros componentes del sistema."51

Bunge prosigue distinguiendo diversos géneros de sistemas concretos, cada uno de los cuales constituye un nivel de organización de la realidad:

(A) FISIOSISTEMAS como una roca y un campo magnético;
(B) QUIMIOSISTEMAS como una hoguera y una batería eléctrica;
(C) BIOSISTEMAS tales como una bacteria y un banco de coral (recordemos la definición de ecosistema que ofrecimos antes, y la de biosfera como el sistema de los ecosistemas);
(D) PSICOSISTEMAS tales como un pájaro y un mamífero;
(E) SOCIOSISTEMAS tales como una tropa de macacos y una comunidad humana (podemos definir la sociosfera como el conjunto de los sociosistemas);
(F) TECNOSISTEMAS tales como una fábrica y un hospital (y podemos definir la tecnosfera como el conjunto de los tecnosistemas). 52
En ecología suele emplearse la noción de ecosistema más que la de biosistema. Un ecosistema es el conjunto formado por comunidades vivientes de muchas plantas y animales que interactúan en un ambiente físico, el cual proporciona un escenario de características definibles. Todo ecosistema puede interpretarse en términos de la superposición de un ciclo y un flujo: un ciclo cerrado de materia y un flujo abierto de energía, ambos regulados por los organismos vivos a través de los eslabones tróficos (productores, consumidores y descomponedores). El conjunto de los ecosistemas forman la biosfera. Al conjunto de los sociosistemas humanos podemos llamarlo sociosfera. El conjunto de los tecnosistemas humanos es la tecnosfera.

Bunge sugiere dos criterios para reconocer si una cosa u objeto concreto es un sistema:
"Para reconocer si una cosa u objeto concreto es un ente simple, o bien un mero agregado (o conglomerado), o bien un sistema, se puede recurrir a uno u otro de los criterios siguientes.
Primer criterio: una cosa es un sistema si y sólo si se comporta como un todo en ciertos respectos, o sea, si tiene leyes propias en cuanto totalidad.
Segundo criterio: una cosa es un sistema si y sólo si su comportamiento cambia apreciablemente cuando se quita uno de sus componentes o se reemplaza por otro de clase diferente."53
Muy característico de los sistemas es la aparición de propiedades emergentes. Podemos definirlas del siguiente modo:
P es una propiedad resultante o hereditaria de x si y sólo si también algunos componentes de x poseen P; P es una propiedad emergente o colectiva de x si y sólo si ningún componente de x posee P54

 Lo que importa resaltar aquí es que algunas de las propiedades de cualquier sistema son emergentes. Así, por ejemplo, los seres vivos son emergentes respecto de los sistemas bioquímicos, éstos respecto de los químicos, y a su vez éstos lo son respecto de los físicos.
No hay que pensar que la perspectiva o el análisis sistémico se limite a las ciencias llamadas naturales. En sociología, por ejemplo, cabe denominar análisis sistémico a toda investigación, teórica o empírica, que, partiendo del postulado según el cual la realidad social ofrece las características de un sistema, interprete y explique los fenómenos sociales por los lazos de interdependencia y que hacen de ellos una totalidad. 55

En ciencias sociales, el enfoque sistémico conduce a descartar un atomismo que descuida el estudio de las relaciones, o la "física social" que desprecia la especificidad de los sistemas.
"El análisis sistémico (...) ha sido objeto de una importante crítica, formulada por varios autores. Se le ha reprochado --y se le reprocha aún-- el hecho de ser demasiado exclusivamente estático, de situarse fuera del tiempo, de no tener en cuenta el cambio social, las contradicciones y los conflictos inherentes a la vida social; en resumen, de ignorar la dialéctica social. Es cierto que buen número de sociólogos y antropólogos han utilizado el análisis sistémico de una manera susceptible de ser criticada. En sus investigaciones, muchos sociólogos y antropólogos han subrayado harto exclusivamente las relaciones de interdependencia 'armoniosas', las complementariedades entre los diferentes elementos de la sociedad. Pero, como han precisado no pocos autores, no debe achacarse esto al análisis sistémico en sí mismo, sino al uso demasiado restringido que haya podido hacerse del mismo."56
La teoría de sistemas arroja luz sobre objetos de distintas ciencias, y se nutre de resultados alcanzados en diversas ciencias: cibernética, teoría de la información y de la comunicación, diversas disciplinas matemáticas (como por ejemplo la teoría de juegos, la topología, la teoría de grafos, etc), ciencias de la computación, investigación operativa, teoría de la decisión, ciertas ramas de la física, biología, psicología. La ambición es muy grande: se trataría de aplicar el mismo tipo de análisis científico a todos los niveles de la realidad, desde la célula orgánica hasta el universo sociocultural; conseguir la unidad del saber científico sobre la base de un mismo método en todo el ámbito de las ciencias (tanto las ciencias naturales como las ciencias sociales). Esta unificación se derivaría del principio heurístico según el cual encontramos organización en todos los niveles de la realidad.

Como señalé al principio, la teoría de sistemas tiende a generar un punto de vista particular, un punto de vista sistémico: se concibe al mundo como un haz de pautas de comportamiento interrelacionadas que se desarrollan dinámicamente.

La atención del investigador familiarizado con la teoría de sistemas se dirige a las interconexiones, las causaciones y los vínculos recíprocos, las retroalimentaciones. Un desarrollo de la teoría de sistemas que seguramente resultará familiar a cualquier lector o lectora preocupados por cuestiones ecológicas es la dinámica de sistemas creada por Jay W. Forrester y otros investigadores a partir de los años cincuenta del siglo XX: su trabajo está en la base del modelo Mundo 3 que sirvió para elaborar el primer informe al Club de Roma, Los límites del crecimiento (1972).57