Mostrando entradas con la etiqueta naturaleza. Mostrar todas las entradas
Mostrando entradas con la etiqueta naturaleza. Mostrar todas las entradas

martes, 7 de enero de 2014

Brindis. Ante la orilla sagrada donde nos espera el destino, seguir vivos es la victoria

A mitad de enero en la valla publicitaria de enfrente, que a las seis de la tarde ya estaba a oscuras, sobre las piernas largas de esa modelo que anuncia un perfume se detendrá un sol imprevisto, muy dulce; al inicio de febrero, llore o ría la Candelaria, se despertará la savia de los árboles y apuntarán las gemas en las ramas desnudas; en marzo muchos sueños que uno alimentó con el año nuevo ya habrán sido derrotados: no has encontrado trabajo y tampoco has adelgazado; en cambio, las flores que perdieron los almendros han sido recuperadas por los cerezos. Pese a todo, deberás seguir adelante, puesto que el sol cumplirá con su oficio inexorable sin contar con las tormentas del corazón. Puede que este sea el artículo malo que uno repite siempre al comenzar el año, pero el sol, siendo como es una bomba de hidrógeno, también se repite y no pasa nada. Mientras las gotas metálicas del deshielo caen de los cobertizos sobre el humeante estiércol del ganado, de la última nieve resplandeciente de abril nacerán rosas en mayo y las nubes pasarán por las veletas de los campanarios cargadas de bienes o llenas de maleficios contra el trigo y el viñedo que peina las lomas. Sin duda, ante la puerta del verano, con la fe renovada, pensarás: tengo que rebelarme, no voy a dejar que me machaquen más, quiero luchar. Aquellas gemas que despertó la savia serán frutas en los mercados, cerezas de junio, ciruelas de julio, fresquillas de agosto, moscatel de septiembre. Mientras el sol decline la luz para pudrir las hojas amarillas de otoño, si finalmente has conseguido no rendirte, obtendrás también tu propia cosecha, tal vez la brisa deliciosa de un amor, el deleite de las risas con los amigos, la gracia de un placer secreto que te conceda un dios pagano. Cuando en noviembre se cierren los días y el recuerdo de los muertos fermente bajo tierra, surgirá del légamo el presagio de que todo va a resucitar de nuevo. Diciembre dejará caer el sol en el abismo, pero con el solsticio de invierno volverá a crecer desde las tinieblas y ese será el momento de recuperar la inmortalidad de cada hora. Ante la orilla sagrada donde nos espera el destino, levanta la copa y brinda por los buenos días del pasado y por todos los sueños imposibles. Seguir vivos es la victoria.
Fuente: Manuel Vicent. El País.

martes, 23 de julio de 2013

¿Por qué hay algo en vez de nada? Lawrence M. Krauss trata de desmontar la creencia en lo sobrenatural

¿Por qué hay algo en vez de nada?
Lawrence M. Krauss trata de desmontar la creencia en lo sobrenatural como origen del universo
El polémico divulgador científico lo hace desde la cosmología

Hay tres poderosas razones para leer este libro, y el lector es muy libre de elegir la que prefiera. La primera es que Lawrence Krauss (Nueva York, 1954) es uno de los intelectuales más interesantes de nuestro tiempo. Cosmólogo y físico teórico de primera línea, director del Proyecto Orígenes de la Universidad de Arizona y polemista de altura —llegó a conminar al papa Ratzinger a retractarse de su teología desde las páginas de The New York Times—, Krauss es uno de esos raros científicos que levantan la vista de sus ecuaciones para ver qué implican en el gran cuadro de las cosas y las ideas. Una inteligencia del futuro, con toda la ciencia, la profundidad y el arte en su pluma. Y no sin cierta mala uva.
La segunda, muy relacionada con el último punto, es que Un universo de la nada puede leerse como un argumento contra la religión, o contra cualquier creencia en lo sobrenatural, y que tanto el autor como sus editores hacen explícito ese ángulo con transparente intención polémica. El biólogo, divulgador y ateo militante Richard Dawkins lo expresa admirablemente en el postfacio: “Si El origen de las especies fue el golpe más letal de la biología a la creencia en lo sobrenatural, quizás acabemos viendo que Un universo de la nada es su equivalente en la cosmología; el título quiere decir lo que dice; y lo que dice es devastador”.
Y la tercera es que el último libro de Krauss —octavo en un currículo que incluye el superventas del año pasado La física de Star Trek— es seguramente la mejor explicación de la cosmología moderna para el lector general disponible en el mercado. Krauss es un divulgador científico de ensueño, rápido, transparente y penetrante, y su escritura está llena de chispa y digresión anecdótica, con un seductor sentido del humor. Algún día toda la especie humana será así.
Hay pocas aventuras intelectuales tan cautivadoras como la cosmología del siglo pasado, en la que aún seguimos inmersos. A principios del siglo XX, la sabiduría convencional era que nuestra galaxia, la Vía Láctea, ocupaba la totalidad de un universo estático e inmanente, y hoy sabemos que solo es una entre los 400.000 millones de galaxias que pueblan el universo observable. Un universo que, para colmo, parece absorto en una expansión acelerada que solo puede conducir a su muerte no ya térmica, sino por falta de sustancia.
Parecemos vivir, por otro lado, en un periodo privilegiado en la historia del cosmos. En el futuro lejano, debido a la expansión acelerada de todo cuanto existe, cada galaxia parecerá estar aislada: parecerá, en efecto, ser la única galaxia del universo, como creíamos en la Vía Láctea a principios del siglo XX. La expansión será tal que toda otra galaxia quedará fuera de toda observación y toda interacción permitida por la relatividad de Einstein, que fija un límite máximo para la velocidad de la luz y cualquier otra cosa.
Los astrónomos del futuro serán mucho más ignorantes que los nuestros, en flagrante contradicción con cualquier idea intuitiva de progreso. Como dice Krauss, “vivimos en un tiempo muy especial, el único tiempo en que la observación permite verificar que… ¡vivimos en un tiempo especial!”. Se trata de una paradoja antrópica, un término casi cabalístico que usan los físicos para referirse a los posibles sesgos que puede introducir en nuestros modelos del mundo el mero hecho de que nosotros estemos observando. El mero hecho de que vivamos en el tipo de universo que permite que vivamos, si me permiten el gongorismo.
Un universo de la nada expone magistralmente el inmenso avance en nuestra comprensión del mundo que han supuesto los últimos cien años de cosmología. De la gran aportación de Einstein con su teoría del tiempo, el espacio y la materia (la relatividad general), pasando por Henrietta Swan Leavitt, la mujer que convirtió las cefeidas en una cinta métrica para medir el cosmos; el astrónomo y exabogado Edwin Hubble, que demostró la expansión del universo con su telescopio y utilizando la teoría de Henrietta, y el físico teórico y sacerdote Georges Lemaître, que leyó el Big Bang en las ecuaciones de Einstein y es sin duda uno de los dos grandes curas de la historia de la ciencia, junto al fundador de la genética, Gregor Mendel.
El título de esta reseña es el subtítulo del libro de Krauss, y también su columna vertebral: ¿Por qué hay algo en vez de nada? Una pregunta milenaria y, según el autor, el último reducto de los teólogos y otros pensadores creyentes. Incluso si la ciencia logra explicar las leyes que rigen el comportamiento de la naturaleza y del ser humano dentro de ella, sostiene esta corriente teológica, jamás podrá responder esa última de las cuestiones. ¿Por qué hay algo en vez de nada?
Apuntando a la cabeza, Un universo de la nada se propone nada menos que responder a esa última de las preguntas. No le voy a reventar el final: lea el libro.
Un universo de la nada. Lawrence M. Krauss. Postfacio de Richard Dawkins.Traducción de Cecilia Belza y Gonzalo García. Pasado & Presente. Barcelona, 2013. 251 páginas. 22 euros
Fuente: El País.

viernes, 14 de junio de 2013

¿Qué está pasando ahí? Modelar el funcionamiento interno del cerebro.

What’s Going On in There? Modeling the Inner Workings of the Brain
Ver vídeo aquí.
Ver aquí en español.

By JENNIFER CUTRARO

A three-dimensional visualization, using yellow fluorescent protein labeling, of long-range connecting neurons in a clarified adult mouse brain. Go to related article and more videos »

Overview
What does current research tell us about the brain, and what does the future of brain research hold? In this lesson, students explore the frontiers of brain science. They learn about new techniques for studying the brain, familiarize themselves with President Obama’s brain research initiative, and build interactive models of the brain and its components.

Materials 
Computers with Internet access, projection equipment, craft supplies, including poster paper, markers, play dough, cotton balls, string and glue.

Warm-Up 
When students arrive, project the series of images of a clarified mouse brain at the front of the room, without explaining what the images show. For each visualization, have students jot the following in their notebooks.

Describe what you see.
Are these images related in any way? Why or why not?
What do you think you might be looking at?
How were these visualizations made?
Ask for volunteers to share their ideas. After a few students have offered their answers, explain to the class that the images represent different parts of a mouse brain that has been processed using a new technique that makes brain tissue transparent. Ask: Why might it be helpful for scientists to study a transparent brain?

You might then show an image of a normal mouse brain, so students can see that an intact brain is normally opaque, and then show them how a mouse brain processed using the new technique becomes clear. Ask: Why might it be helpful for scientists to study a transparent brain? (Note: Here you might choose to have students read the related article about this research in lieu of or in addition to the article we’ve chosen below.)

Finally, explain that students will now read about and model activity inside the brain, in a nod to Mr. Obama’s new initiative to map the human brain.

Related 
In the op-ed “What Our Brains Can Teach Us,” David Eagleman likens the brain to an alien landscape:

After President Obama’s recent announcement of a plan to invigorate the study of neuroscience with what could amount to a $3 billion investment, a reasonable taxpayer might ask: Why brain science? Why now?

Here’s why. Imagine you were an alien catching sight of the Earth. Your species knows nothing about humans, let alone how to interpret the interactions of seven billion people in complex social networks. With no acquaintance with the nuances of human language or behavior, it proves impossible to decipher the secret idiom of neighborhoods and governments, the interplay of local and global culture, or the intertwining economies of nations. It just looks like pandemonium, a meaningless Babel.

So it goes with the brain. We are the aliens in that landscape, and the brain is an even more complicated cipher.

Read the entire article with your class, using the questions below.

Questions
For discussion and reading comprehension:

What is a neuron? What is the “voltage spike” to which the author refers? How do neurons communicate?
What does the author mean when he writes, “Learning to better speak the language of the brain is our best hope for turning the chaos into order, for unmasking and addressing the hidden patterns behind disease”? What is “the language of the brain”?
How will a better understanding of how the brain works promote advances in technology, society and machinery? Explain.
After reading this op-ed, how would you now answer the questions: “Why brain science? Why now?” raised at the beginning of the article?
What questions do you have about brain science after reading this article?
Activity | Drawing inspiration from Mr. Eagleman’s article, students imagine themselves as alien visitors to the landscape of the brain and build interactive maps, models of the brain or components of it.

To begin, ask students to close their eyes and envision themselves as the author puts it, “aliens in the landscape of the brain.” While their eyes are closed, read the following passage aloud:

[The brain] is composed of 100 billion electrically active cells called neurons, each connected to many thousands of its neighbors. Each neuron relays information in the form of miniature voltage spikes, which are then converted into chemical signals that bridge the gap to other neurons. Most neurons send these signals many times per second; if each signaling event were to make a sound as loud as a pin dropping, the cacophony from a single human head would blow out all the windows. The complexity of such a system bankrupts our language; observing the brain with our current technologies, we mostly detect an enigmatic uproar.

With their eyes still closed, ask students to visualize some of the things the author describes. What do they think a neuron looks like? What does it look like when a “neuron relays information in the form of miniature voltage spikes”? What does a brain look like? How would the brain look if you could see the thousands of connections between billions of cells? Have students make sketches on poster paper to show what they visualized.

Next, have students use their sketches as a starting point for developing paper or 3-D models of the brain and its neurons. Provide students with a wide variety of craft materials, like paper, play dough, pipe cleaners, glue, scissors, string and cotton balls.

To start, have students sketch a brain model on poster paper, identifying the main regions of the brain and the function of each. If students wish, they may instead build and label a model of the brain.

From there, have students make the connection that the brain is composed of neurons that interact in neural networks. Students might, for example, build a model of a neuron that explains how their structure relates to their firing. Or they might devise a way to call out a section of the brain, highlighting the interconnections of neurons.

To extend the activity, students could also explore the role of neurons in forming memories, building additional models to show the role of neurotransmitters in forming short-term memories, and proteins called kinases in long-term memories. Students also could show how the brain and nervous system interact with other body systems.

Students also may use models to show how neurons in the brain affect movement, speaking and sensory perception.

When students have finished building their models, allow time for them to share with the class. Ask students to first show their sketches representative of the brain’s landscape, as seen through the eyes of an alien visitor. Then ask how their model or models help to make sense of this landscape.

Going Further

Students pair up and take on the role of presidential speechwriters, preparing a script for the president to deliver to the nation, as he tries to marshal support for his initiative to map activity within the human brain.

The speech should outline several key components:

A statement of the problem. Why does the president believe it is important to advance our understanding of the brain?
What advances does the new brain initiative promise?
The technologies scientists are using to better understand the brain today and how they might apply those technologies in the future.
A persuasive argument that will rally supporters. Argumentative writing is one of the skills emphasized by the Common Core Standards. How might you get listeners excited about this initiative? What case will you make for why it is needed? This Learning Network post can help you understand how arguments are constructed.
Common Core ELA Anchor Standards, 6-12:

Reading
1. Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
2. Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.

Speaking and Listening
1. Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others’ ideas and expressing their own clearly and persuasively.
2. Integrate and evaluate information presented in diverse media and formats, including visually, quantitatively, and orally.
3. Evaluate a speaker’s point of view, reasoning, and use of evidence and rhetoric.
4. Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience.
5. Make strategic use of digital media and visual displays of data to express information and enhance understanding of presentations.

Language
1. Demonstrate command of the conventions of standard English grammar and usage when writing or speaking.

McREL Standards

Life Sciences
5. Understands the structure and function of cells and organisms.
11. Understands the nature of scientific knowledge.
6. Understands relationships among organisms and their physical environment.
7.Understands biological evolution and the diversity of life.


Nature of Science
11.Understands the nature of scientific knowledge
12.Understands the nature of scientific inquiry
13.Understands the scientific enterprise
Fuente: The NYT.